These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 20582271)

  • 41. A novel hybrid BCI speller based on RSVP and SSVEP paradigm.
    Jalilpour S; Hajipour Sardouie S; Mijani A
    Comput Methods Programs Biomed; 2020 Apr; 187():105326. PubMed ID: 31980276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Hybrid BCI Based on SSVEP and EOG for Robotic Arm Control.
    Zhu Y; Li Y; Lu J; Li P
    Front Neurorobot; 2020; 14():583641. PubMed ID: 33328950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5271-4. PubMed ID: 24110925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
    Chen X; Wang Y; Nakanishi M; Jung TP; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3993-6. PubMed ID: 25570867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a Brain-Computer Interface Toggle Switch with Low False-Positive Rate Using Respiration-Modulated Photoplethysmography.
    Han CH; Kim E; Im CH
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An online hybrid BCI system based on SSVEP and EMG.
    Lin K; Cinetto A; Wang Y; Chen X; Gao S; Gao X
    J Neural Eng; 2016 Apr; 13(2):026020. PubMed ID: 26902294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eyes-closed hybrid brain-computer interface employing frontal brain activation.
    Shin J; Müller KR; Hwang HJ
    PLoS One; 2018; 13(5):e0196359. PubMed ID: 29734383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.
    Ji H; Li J; Lu R; Gu R; Cao L; Gong X
    Comput Intell Neurosci; 2016; 2016():1732836. PubMed ID: 26880873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Classification of Movement and Inhibition Using a Hybrid BCI.
    Chmura J; Rosing J; Collazos S; Goodwin SJ
    Front Neurorobot; 2017; 11():38. PubMed ID: 28860986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features.
    Xu M; Han J; Wang Y; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3073-3082. PubMed ID: 32149621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An online hybrid BCI combining SSVEP and EOG-based eye movements.
    Zhang J; Gao S; Zhou K; Cheng Y; Mao S
    Front Hum Neurosci; 2023; 17():1103935. PubMed ID: 36875236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DIY hybrid SSVEP-P300 LED stimuli for BCI platform using EMOTIV EEG headset.
    Mouli S; Palaniappan R
    HardwareX; 2020 Oct; 8():e00113. PubMed ID: 35498243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions.
    Gutierrez-Martinez J; Mercado-Gutierrez JA; Carvajal-Gámez BE; Rosas-Trigueros JL; Contreras-Martinez AE
    Front Hum Neurosci; 2021; 15():772837. PubMed ID: 34899220
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring Training Effect in 42 Human Subjects Using a Non-invasive Sensorimotor Rhythm Based Online BCI.
    Meng J; He B
    Front Hum Neurosci; 2019; 13():128. PubMed ID: 31057380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs.
    Zerafa R; Camilleri T; Falzon O; Camilleri KP
    J Neural Eng; 2018 Oct; 15(5):051001. PubMed ID: 29869996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.