These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20582581)

  • 1. Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatula-Uromyces striatus interaction.
    Madrid E; Gil J; Rubiales D; Krajinski F; Schlereth A; Millán T
    Theor Appl Genet; 2010 Nov; 121(7):1311-21. PubMed ID: 20582581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling.
    Gao LL; Kamphuis LG; Kakar K; Edwards OR; Udvardi MK; Singh KB
    New Phytol; 2010 Jun; 186(4):980-994. PubMed ID: 20345634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of a bacterially induced basal and hypersensitive response of Medicago truncatula.
    Bozsó Z; Maunoury N; Szatmari A; Mergaert P; Ott PG; Zsíros LR; Szabó E; Kondorosi E; Klement Z
    Plant Mol Biol; 2009 Aug; 70(6):627-46. PubMed ID: 19466566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen.
    Yadav H; Dreher D; Athmer B; Porzel A; Gavrin A; Baldermann S; Tissier A; Hause B
    Plant Physiol; 2019 Jul; 180(3):1598-1613. PubMed ID: 31015300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).
    Kumar K; Srivastava V; Purayannur S; Kaladhar VC; Cheruvu PJ; Verma PK
    DNA Res; 2016 Jun; 23(3):225-39. PubMed ID: 27060167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual RNA-Seq analysis of Medicago truncatula and the pea powdery mildew Erysiphe pisi uncovers distinct host transcriptional signatures during incompatible and compatible interactions and pathogen effector candidates.
    Gupta M; Sharma G; Saxena D; Budhwar R; Vasudevan M; Gupta V; Gupta A; Gupta R; Chandran D
    Genomics; 2020 May; 112(3):2130-2145. PubMed ID: 31837401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.
    Tesfaye M; Silverstein KA; Nallu S; Wang L; Botanga CJ; Gomez SK; Costa LM; Harrison MJ; Samac DA; Glazebrook J; Katagiri F; Gutierrez-Marcos JF; Vandenbosch KA
    PLoS One; 2013; 8(3):e58992. PubMed ID: 23527067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition.
    Chakraborty J; Sen S; Ghosh P; Jain A; Das S
    BMC Plant Biol; 2020 Jul; 20(1):319. PubMed ID: 32631232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads.
    Terrasson E; Darrasse A; Righetti K; Buitink J; Lalanne D; Ly Vu B; Pelletier S; Bolingue W; Jacques MA; Leprince O
    J Exp Bot; 2015 Jul; 66(13):3737-52. PubMed ID: 25922487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula.
    Kamphuis LG; Lichtenzveig J; Oliver RP; Ellwood SR
    BMC Plant Biol; 2008 Mar; 8():30. PubMed ID: 18366746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Resistance Mechanisms of Medicago truncatula Ecotypes Against the Rust Fungus Uromyces striatus.
    Kemen E; Hahn M; Mendgen K; Struck C
    Phytopathology; 2005 Feb; 95(2):153-7. PubMed ID: 18943984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative network analyses of wilt transcriptome in chickpea reveal genotype dependent regulatory hubs in immunity and susceptibility.
    Ashraf N; Basu S; Narula K; Ghosh S; Tayal R; Gangisetty N; Biswas S; Aggarwal PR; Chakraborty N; Chakraborty S
    Sci Rep; 2018 Apr; 8(1):6528. PubMed ID: 29695764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction.
    Diola V; Brito GG; Caixeta ET; Pereira LF; Loureiro ME
    Funct Integr Genomics; 2013 Aug; 13(3):379-89. PubMed ID: 23835851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae).
    Lopes MA; Hora BT; Dias CV; Santos GC; Gramacho KP; Cascardo JC; Gesteira AS; Micheli F
    Genet Mol Res; 2010 Jul; 9(3):1279-97. PubMed ID: 20623454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata.
    Die JV; González Verdejo CI; Dita MA; Nadal S; Román B
    Plant Physiol Biochem; 2009 Jul; 47(7):635-41. PubMed ID: 19321356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.
    Thatcher LF; Williams AH; Garg G; Buck SG; Singh KB
    BMC Genomics; 2016 Nov; 17(1):860. PubMed ID: 27809762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome.
    Nayak SN; Zhu H; Varghese N; Datta S; Choi HK; Horres R; Jüngling R; Singh J; Kishor PB; Sivaramakrishnan S; Hoisington DA; Kahl G; Winter P; Cook DR; Varshney RK
    Theor Appl Genet; 2010 May; 120(7):1415-41. PubMed ID: 20098978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum.
    Ben C; Debellé F; Berges H; Bellec A; Jardinaud MF; Anson P; Huguet T; Gentzbittel L; Vailleau F
    New Phytol; 2013 Aug; 199(3):758-72. PubMed ID: 23638965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Characterization of Transcription Factor Gene-Derived Microsatellite (TFGM) Markers in Medicago truncatula and Their Transferability in Leguminous and Non-Leguminous Species.
    Liu W; Jia X; Liu Z; Zhang Z; Wang Y; Liu Z; Xie W
    Molecules; 2015 May; 20(5):8759-71. PubMed ID: 25988608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.).
    Ayyappan V; Kalavacharla V; Thimmapuram J; Bhide KP; Sripathi VR; Smolinski TG; Manoharan M; Thurston Y; Todd A; Kingham B
    PLoS One; 2015; 10(7):e0132176. PubMed ID: 26167691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.