These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20582620)

  • 1. Towards the development of hemerythrin-based blood substitutes.
    Mot AC; Roman A; Lupan I; Kurtz DM; Silaghi-Dumitrescu R
    Protein J; 2010 Aug; 29(6):387-93. PubMed ID: 20582620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Attachment of Polyethylene Glycol to Hemerythrin for Potential Use in Blood Substitutes.
    Arkosi MK; Mot AC; Lupan I; Tegla MGG; Silaghi-Dumitrescu R
    Protein J; 2023 Aug; 42(4):374-382. PubMed ID: 37119381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards hemerythrin-based blood substitutes: comparative performance to hemoglobin on human leukocytes and umbilical vein endothelial cells.
    Fischer-Fodor E; Mot A; Deac F; Arkosi M; Silaghi-Dumitrescu R
    J Biosci; 2011 Jun; 36(2):215-21. PubMed ID: 21654075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes.
    Hathazi D; Mot AC; Vaida A; Scurtu F; Lupan I; Fischer-Fodor E; Damian G; Kurtz DM; Silaghi-Dumitrescu R
    Biomacromolecules; 2014 May; 15(5):1920-7. PubMed ID: 24716617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copolymerization of recombinant Phascolopsis gouldii hemerythrin with human serum albumin for use in blood substitutes.
    Arkosi M; Scurtu F; Vulpoi A; Silaghi-Dumitrescu R; Kurtz D
    Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):218-223. PubMed ID: 28034322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin and free radicals: implications for the development of a safe blood substitute.
    Alayash AI; Cashon RE
    Mol Med Today; 1995 Jun; 1(3):122-7. PubMed ID: 9415147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo evaluation of hemerythrin-based oxygen carriers: Similarities with hemoglobin-based counterparts.
    Toma VA; Farcas AD; Roman I; Sevastre B; Hathazi D; Scurtu F; Damian G; Silaghi-Dumitrescu R
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1422-1427. PubMed ID: 28986211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of well-defined bovine polyhemoglobin based on dimethyl adipimidate and glutaraldebyde cross-linkage.
    Hu T; Su Z
    Biochem Biophys Res Commun; 2002 May; 293(3):958-61. PubMed ID: 12051752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structures of Phascolopsis gouldii wild type and L98Y methemerythrins: structural and functional alterations of the O2 binding pocket.
    Farmer CS; Kurtz DM; Liu ZJ; Wang BC; Rose J; Ai J; Sanders-Loehr J
    J Biol Inorg Chem; 2001 Apr; 6(4):418-29. PubMed ID: 11372200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin-albumin cross-linking with disuccinimidyl suberate (DSS) and/or glutaraldehyde for blood substitutes.
    Scurtu F; Zolog O; Iacob B; Silaghi-Dumitrescu R
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):13-7. PubMed ID: 23342991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recombinant polymeric hemoglobin with conformational, functional, and physiological characteristics of an in vivo O2 transporter.
    Bobofchak KM; Mito T; Texel SJ; Bellelli A; Nemoto M; Traystman RJ; Koehler RC; Brinigar WS; Fronticelli C
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H549-61. PubMed ID: 12689854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxymyohemerythrin: discriminating between O2 release and autoxidation.
    Lloyd CR; Raner GM; Moser A; Eyring EM; Ellis WR
    J Inorg Biochem; 2000 Oct; 81(4):293-300. PubMed ID: 11065193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-generation blood substitutes: what have we learned? Biochemical and physiological perspectives.
    Alayash AI; D'Agnillo F; Buehler PW
    Expert Opin Biol Ther; 2007 May; 7(5):665-75. PubMed ID: 17477804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.
    Zolog O; Mot A; Deac F; Roman A; Fischer-Fodor E; Silaghi-Dumitrescu R
    Protein J; 2011 Jan; 30(1):27-31. PubMed ID: 21161348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of recombinant hemoglobins for use in transfusion fluids.
    Fronticelli C; Koehler RC
    Crit Care Clin; 2009 Apr; 25(2):357-71, Table of Contents. PubMed ID: 19341913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The O(2) binding pocket of myohemerythrin: role of a conserved leucine.
    Xiong J; Phillips RS; Kurtz DM; Jin S; Ai J; Sanders-Loehr J
    Biochemistry; 2000 Jul; 39(29):8526-36. PubMed ID: 10913259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel dynamic heterogeneous phase polymerization reaction for poly-hemoglobin with narrow molecular weight distribution.
    Wang X; Huang L; Wang JF; Yang CM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(5):439-44. PubMed ID: 18821090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes.
    Coppola D; Bruno S; Ronda L; Viappiani C; Abbruzzetti S; di Prisco G; Verde C; Mozzarelli A
    BMC Biochem; 2011 Dec; 12():66. PubMed ID: 22185675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood substitutes.
    Palmer AF; Intaglietta M
    Annu Rev Biomed Eng; 2014 Jul; 16():77-101. PubMed ID: 24819476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.