BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20583037)

  • 1. Capsules with silver nanoparticle enrichment subdomains and their antimicrobial properties.
    Wang A; Cui Y; Yang Y; Li J
    Chem Asian J; 2010 Aug; 5(8):1780-7. PubMed ID: 20583037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity.
    Das MR; Sarma RK; Saikia R; Kale VS; Shelke MV; Sengupta P
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):16-22. PubMed ID: 21109409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity.
    Jaidev LR; Narasimha G
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):430-3. PubMed ID: 20708910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile route to synthesize silver nanoparticles in polyelectrolyte capsules.
    Anandhakumar S; Raichur AM
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):379-83. PubMed ID: 21333503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocidal activity of nanocrystalline silver powders and particles.
    Smetana AB; Klabunde KJ; Marchin GR; Sorensen CM
    Langmuir; 2008 Jul; 24(14):7457-64. PubMed ID: 18543995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects.
    Liu X; Xu Y; Wang X; Shao M; Xu J; Wang J; Li L; Zhang R; Guo X
    Colloids Surf B Biointerfaces; 2015 Mar; 127():148-54. PubMed ID: 25677338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.
    Choi WS; Koo HY; Kim DY
    Langmuir; 2008 May; 24(9):4633-6. PubMed ID: 18410163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.
    Annadhasan M; SankarBabu VR; Naresh R; Umamaheswari K; Rajendiran N
    Colloids Surf B Biointerfaces; 2012 Aug; 96():14-21. PubMed ID: 22537720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity.
    Thomas V; Yallapu MM; Sreedhar B; Bajpai SK
    J Colloid Interface Sci; 2007 Nov; 315(1):389-95. PubMed ID: 17707388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.
    Ni Z; Wang Z; Sun L; Li B; Zhao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of linoleic acid-capped silver nanoparticles and their antimicrobial effect.
    Das R; Gang S; Nath SS; Bhattacharjee R
    IET Nanobiotechnol; 2012 Jun; 6(2):81-5. PubMed ID: 22559712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity.
    Zhou Y; Yang J; He T; Shi H; Cheng X; Lu Y
    Small; 2013 Oct; 9(20):3445-54. PubMed ID: 23637081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity.
    Mosaiab T; Jeong CJ; Shin GJ; Choi KH; Lee SK; Lee I; In I; Park SY
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3786-94. PubMed ID: 23910278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure.
    Cui X; Li CM; Bao H; Zheng X; Lu Z
    J Colloid Interface Sci; 2008 Nov; 327(2):459-65. PubMed ID: 18786677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonochemical coating of paper by microbiocidal silver nanoparticles.
    Gottesman R; Shukla S; Perkas N; Solovyov LA; Nitzan Y; Gedanken A
    Langmuir; 2011 Jan; 27(2):720-6. PubMed ID: 21155556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles.
    Eby DM; Schaeublin NM; Farrington KE; Hussain SM; Johnson GR
    ACS Nano; 2009 Apr; 3(4):984-94. PubMed ID: 19344124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic-soluble antimicrobial silver nanoparticle-polymer composites in gram scale by one-pot synthesis.
    Nair AS; Binoy NP; Ramakrishna S; Kurup TR; Chan LW; Goh CH; Islam MR; Utschig T; Pradeep T
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2413-9. PubMed ID: 20356108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers.
    Kong H; Jang J
    Biomacromolecules; 2008 Oct; 9(10):2677-81. PubMed ID: 18771314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.