These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 20583276)

  • 21. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in miniaturized microfluidic flow cytometry for clinical use.
    Chung TD; Kim HC
    Electrophoresis; 2007 Dec; 28(24):4511-20. PubMed ID: 18008312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical performance of an ultrasonic particle focusing flow cytometer.
    Goddard GR; Sanders CK; Martin JC; Kaduchak G; Graves SW
    Anal Chem; 2007 Nov; 79(22):8740-6. PubMed ID: 17924647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology.
    Nascimento E; Silva T; Oliva A
    Parassitologia; 2007 May; 49 Suppl 1():45-52. PubMed ID: 17691607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confocal backscattering-based detection of leukemic cells in flowing blood samples.
    Greiner C; Hunter M; Rius F; Huang P; Georgakoudi I
    Cytometry A; 2011 Oct; 79(10):874-83. PubMed ID: 21638765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy.
    Valero A; Braschler T; Renaud P
    Lab Chip; 2010 Sep; 10(17):2216-25. PubMed ID: 20664865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
    Austin Suthanthiraraj PP; Piyasena ME; Woods TA; Naivar MA; Lόpez GP; Graves SW
    Methods; 2012 Jul; 57(3):259-71. PubMed ID: 22465280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerodynamically assisted bio-jets: the development of a novel and direct non-electric field-driven methodology for engineering living organisms.
    Arumuganathar S; Irvine S; McEwan JR; Jayasinghe SN
    Biomed Mater; 2007 Jun; 2(2):158-68. PubMed ID: 18458450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing.
    Gawad S; Schild L; Renaud PH
    Lab Chip; 2001 Sep; 1(1):76-82. PubMed ID: 15100895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture.
    Rodriguez-Trujillo R; Castillo-Fernandez O; Garrido M; Arundell M; Valencia A; Gomila G
    Biosens Bioelectron; 2008 Oct; 24(2):290-6. PubMed ID: 18511254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.