These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Genome-wide association scans for secondary traits using case-control samples. Monsees GM; Tamimi RM; Kraft P Genet Epidemiol; 2009 Dec; 33(8):717-28. PubMed ID: 19365863 [TBL] [Abstract][Full Text] [Related]
24. Genetic association analysis of complex diseases incorporating intermediate phenotype information. Li Y; Huang J; Amos CI PLoS One; 2012; 7(10):e46612. PubMed ID: 23094028 [TBL] [Abstract][Full Text] [Related]
25. Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Huang WY; Berndt SI; Kang D; Chatterjee N; Chanock SJ; Yeager M; Welch R; Bresalier RS; Weissfeld JL; Hayes RB Cancer Epidemiol Biomarkers Prev; 2006 Feb; 15(2):306-11. PubMed ID: 16492920 [TBL] [Abstract][Full Text] [Related]
26. A gene-based method for detecting gene-gene co-association in a case-control association study. Peng Q; Zhao J; Xue F Eur J Hum Genet; 2010 May; 18(5):582-7. PubMed ID: 20029457 [TBL] [Abstract][Full Text] [Related]
27. Robust analysis of secondary phenotypes in case-control genetic association studies. Xing C; M McCarthy J; Dupuis J; Adrienne Cupples L; B Meigs J; Lin X; S Allen A Stat Med; 2016 Oct; 35(23):4226-37. PubMed ID: 27241694 [TBL] [Abstract][Full Text] [Related]
28. XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. Stern MC; Siegmund KD; Conti DV; Corral R; Haile RW Cancer Epidemiol Biomarkers Prev; 2006 Dec; 15(12):2384-90. PubMed ID: 17164360 [TBL] [Abstract][Full Text] [Related]
29. Dietary heterocyclic amine intake, NAT2 genetic polymorphism, and colorectal adenoma risk: the colorectal adenoma study in Tokyo. Budhathoki S; Iwasaki M; Yamaji T; Sasazuki S; Takachi R; Sakamoto H; Yoshida T; Tsugane S Cancer Epidemiol Biomarkers Prev; 2015 Mar; 24(3):613-20. PubMed ID: 25604583 [TBL] [Abstract][Full Text] [Related]
30. Shrinkage estimation for robust and efficient screening of single-SNP association from case-control genome-wide association studies. Luo S; Mukherjee B; Chen J; Chatterjee N Genet Epidemiol; 2009 Dec; 33(8):740-50. PubMed ID: 19434716 [TBL] [Abstract][Full Text] [Related]
31. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. Woo HJ; Yu C; Kumar K; Gold B; Reifman J BMC Genomics; 2016 Aug; 17(1):695. PubMed ID: 27576376 [TBL] [Abstract][Full Text] [Related]
32. Genome-wide association study identifies possible genetic risk factors for colorectal adenomas. Edwards TL; Shrubsole MJ; Cai Q; Li G; Dai Q; Rex DK; Ulbright TM; Fu Z; Delahanty RH; Murff HJ; Smalley W; Ness RM; Zheng W Cancer Epidemiol Biomarkers Prev; 2013 Jul; 22(7):1219-26. PubMed ID: 23677573 [TBL] [Abstract][Full Text] [Related]
33. Adaptively weighted association statistics. LeBlanc M; Kooperberg C Genet Epidemiol; 2009 Jul; 33(5):442-52. PubMed ID: 19170133 [TBL] [Abstract][Full Text] [Related]
34. A unifying framework for robust association testing, estimation, and genetic model selection using the generalized linear model. Loley C; König IR; Hothorn L; Ziegler A Eur J Hum Genet; 2013 Dec; 21(12):1442-8. PubMed ID: 23572026 [TBL] [Abstract][Full Text] [Related]
35. Assessment and management of single nucleotide polymorphism genotype errors in genetic association analysis. Gordon D; Ott J Pac Symp Biocomput; 2001; ():18-29. PubMed ID: 11262939 [TBL] [Abstract][Full Text] [Related]
36. A Bayesian approach to genetic association studies with family-based designs. Naylor MG; Weiss ST; Lange C Genet Epidemiol; 2010 Sep; 34(6):569-74. PubMed ID: 20818722 [TBL] [Abstract][Full Text] [Related]
37. Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: the influence of smoking. Okkels H; Sigsgaard T; Wolf H; Autrup H Cancer Epidemiol Biomarkers Prev; 1997 Apr; 6(4):225-31. PubMed ID: 9107426 [TBL] [Abstract][Full Text] [Related]
38. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection. Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F; Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609 [TBL] [Abstract][Full Text] [Related]
39. Proper analysis of secondary phenotype data in case-control association studies. Lin DY; Zeng D Genet Epidemiol; 2009 Apr; 33(3):256-65. PubMed ID: 19051285 [TBL] [Abstract][Full Text] [Related]
40. Genotype-based association mapping of complex diseases: gene-environment interactions with multiple genetic markers and measurement error in environmental exposures. Lobach I; Fan R; Carroll RJ Genet Epidemiol; 2010 Dec; 34(8):792-802. PubMed ID: 21031455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]