These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20583304)

  • 1. Characterization of protein degradation in serum-based lubricants during simulation wear testing of metal-on-metal hip prostheses.
    Maskiewicz VK; Williams PA; Prates SJ; Bowsher JG; Clarke IC
    J Biomed Mater Res B Appl Biomater; 2010 Aug; 94(2):429-440. PubMed ID: 20583304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing ceramic-metal to metal-metal total hip replacements--a simulator study of metal wear and ion release in 32- and 38-mm bearings.
    Ishida T; Clarke IC; Donaldson TK; Shirasu H; Shishido T; Yamamoto K
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):887-896. PubMed ID: 19598291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rates.
    Lal S; Hall RM; Tipper JL
    Acta Biomater; 2016 Sep; 42():420-428. PubMed ID: 27395827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.
    Hu XQ; Wood RJ; Taylor A; Tuke MA
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1061-9. PubMed ID: 22292204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lubrication of metal-on-metal hip joints: the effect of protein content and load on film formation and wear.
    Myant C; Underwood R; Fan J; Cann PM
    J Mech Behav Biomed Mater; 2012 Feb; 6():30-40. PubMed ID: 22301171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro tests of substitute lubricants for wear testing orthopaedic biomaterials.
    Scholes SC; Joyce TJ
    Proc Inst Mech Eng H; 2013 Jun; 227(6):693-703. PubMed ID: 23636752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calf serum constituent fractions influence polyethylene wear and microbial growth in knee simulator testing.
    Brandt JM; Charron K; Zhao L; MacDonald SJ; Medley JB
    Proc Inst Mech Eng H; 2012 Jun; 226(6):427-40. PubMed ID: 22783759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis.
    Firkins PJ; Tipper JL; Ingham E; Stone MH; Farrar R; Fisher J
    J Biomech; 2001 Oct; 34(10):1291-8. PubMed ID: 11522308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2005 Sep; 219(5):319-28. PubMed ID: 16225148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of metal ions from nano CoCrMo wear debris generated from tribo-corrosion processes in artificial hip implants.
    Wang Y; Yan Y; Su Y; Qiao L
    J Mech Behav Biomed Mater; 2017 Apr; 68():124-133. PubMed ID: 28161662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of ceramic-on-metal and metal-on-metal hip prostheses under adverse conditions.
    Williams S; Al-Hajjar M; Isaac GH; Fisher J
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):770-5. PubMed ID: 23359608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of protein lubrication on the wear properties of materials for prosthetic joints.
    Liao YS; Benya PD; McKellop HA
    J Biomed Mater Res; 1999; 48(4):465-73. PubMed ID: 10421688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wear of surface engineered metal-on-metal hip prostheses.
    Fisher J; Hu XQ; Stewart TD; Williams S; Tipper JL; Ingham E; Stone MH; Davies C; Hatto P; Bolton J; Riley M; Hardaker C; Isaac GH; Berry G
    J Mater Sci Mater Med; 2004 Mar; 15(3):225-35. PubMed ID: 15334994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frictional heating of bearing materials tested in a hip joint wear simulator.
    Lu Z; McKellop H
    Proc Inst Mech Eng H; 1997; 211(1):101-8. PubMed ID: 9141895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro study of the reduction in wear of metal-on-metal hip prostheses using surface-engineered femoral heads.
    Fisher J; Hu XQ; Tipper JL; Stewart TD; Williams S; Stone MH; Davies C; Hatto P; Bolton J; Riley M; Hardaker C; Isaac GH; Berry G; Ingham E
    Proc Inst Mech Eng H; 2002; 216(4):219-30. PubMed ID: 12206518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.
    Goldsmith AA; Dowson D; Isaac GH; Lancaster JG
    Proc Inst Mech Eng H; 2000; 214(1):39-47. PubMed ID: 10718049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of lubricant composition on in vitro wear testing of polymeric acetabular components.
    Wang A; Essner A; Schmidig G
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):45-52. PubMed ID: 14689495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical and Wear Analyses of 9 Large Metal-on-Metal Total Hip Prostheses.
    Koper MC; Mathijssen NM; Witt F; Morlock MM; Vehmeijer SB
    PLoS One; 2016; 11(10):e0163438. PubMed ID: 27711119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wear-corrosion synergism in a CoCrMo hip bearing alloy is influenced by proteins.
    Mathew MT; Jacobs JJ; Wimmer MA
    Clin Orthop Relat Res; 2012 Nov; 470(11):3109-17. PubMed ID: 22956237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator.
    Firkins PJ; Tipper JL; Saadatzadeh MR; Ingham E; Stone MH; Farrar R; Fisher J
    Biomed Mater Eng; 2001; 11(2):143-57. PubMed ID: 11352113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.