These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 20583745)
1. Synthesis of guanidines from azides: a general and straightforward methodology in carbohydrate chemistry. Santana AG; Francisco CG; Suárez E; González CC J Org Chem; 2010 Aug; 75(15):5371-4. PubMed ID: 20583745 [TBL] [Abstract][Full Text] [Related]
2. A novel traceless resin-bound guanidinylating reagent for secondary amines to prepare N,N-disubstituted guanidines. Zapf CW; Creighton CJ; Tomioka M; Goodman M Org Lett; 2001 Apr; 3(8):1133-6. PubMed ID: 11348177 [TBL] [Abstract][Full Text] [Related]
3. Efficient transformation of azides to primary amines using the mild and easily accessible CeCl3.7H2O/NaI system. Bartoli G; Di Antonio G; Giovannini R; Giuli S; Lanari S; Paoletti M; Marcantoni E J Org Chem; 2008 Mar; 73(5):1919-24. PubMed ID: 18266385 [TBL] [Abstract][Full Text] [Related]
5. One-pot azidochlorination of glycals. Plattner C; Höfener M; Sewald N Org Lett; 2011 Feb; 13(4):545-7. PubMed ID: 21244046 [TBL] [Abstract][Full Text] [Related]
6. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates. Zhang WX; Nishiura M; Hou Z Chemistry; 2007; 13(14):4037-51. PubMed ID: 17348047 [TBL] [Abstract][Full Text] [Related]
7. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides. Wu X; Hu L J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793 [TBL] [Abstract][Full Text] [Related]
8. New cellulose-supported reagent: a sustainable approach to guanidines. Porcheddu A; Giacomelli G; Chighine A; Masala S Org Lett; 2004 Dec; 6(26):4925-7. PubMed ID: 15606101 [TBL] [Abstract][Full Text] [Related]
9. A mild method for the synthesis of carbamate-protected guanidines using the Burgess reagent. Maki T; Tsuritani T; Yasukata T Org Lett; 2014 Apr; 16(7):1868-71. PubMed ID: 24628041 [TBL] [Abstract][Full Text] [Related]
10. TFA-sensitive arylsulfonylthiourea-assisted synthesis of N,N'-substituted guanidines. Li J; Zhang G; Zhang Z; Fan E J Org Chem; 2003 Feb; 68(4):1611-4. PubMed ID: 12585918 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of N-sugar-substituted phthalimides and their derivatives from sugar azides and phthalic anhydride. Zhang SN; Li ZJ; Cai MS Carbohydr Res; 2004 Jun; 339(8):1419-20. PubMed ID: 15178382 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of mono- and symmetrical di-N-hydroxy- and N-aminoguanidines. Katritzky AR; Khashab NM; Bobrov S; Yoshioka M J Org Chem; 2006 Sep; 71(18):6753-8. PubMed ID: 16930024 [TBL] [Abstract][Full Text] [Related]
14. Selective reduction of anomeric azides to amines with tetrathiomolybdate: synthesis of beta-D-glycosylamines. Sridhar PR; Prabhu KR; Chandrasekaran S J Org Chem; 2003 Jun; 68(13):5261-4. PubMed ID: 12816487 [TBL] [Abstract][Full Text] [Related]
15. Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Barral K; Moorhouse AD; Moses JE Org Lett; 2007 Apr; 9(9):1809-11. PubMed ID: 17391043 [TBL] [Abstract][Full Text] [Related]
16. Phase-transfer-catalyzed alkylation of guanidines by alkyl halides under biphasic conditions: a convenient protocol for the synthesis of highly functionalized guanidines. Powell DA; Ramsden PD; Batey RA J Org Chem; 2003 Mar; 68(6):2300-9. PubMed ID: 12636395 [TBL] [Abstract][Full Text] [Related]
20. Trimethylsilylnitrate-trimethylsilyl azide: a novel reagent system for the synthesis of 2-deoxyglycosyl azides from glycals. Application in the synthesis of 2-deoxy-beta-N-glycopeptides. Reddy BG; Madhusudanan KP; Vankar YD J Org Chem; 2004 Apr; 69(7):2630-3. PubMed ID: 15049677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]