These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20583798)

  • 1. Absorption cross section of ozone isotopologues calculated with the multiconfiguration time-dependent hartree (MCTDH) method: I. The Hartley and Huggins bands.
    Ndengué SA; Gatti F; Schinke R; Meyer HD; Jost R
    J Phys Chem A; 2010 Sep; 114(36):9855-63. PubMed ID: 20583798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ozone photodissociation: isotopic and electronic branching ratios for symmetric and asymmetric isotopologues.
    Ndengué SA; Schinke R; Gatti F; Meyer HD; Jost R
    J Phys Chem A; 2012 Dec; 116(50):12271-9. PubMed ID: 23163640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Huggins band for six ozone isotopologues: vibrational levels and absorption cross section.
    Ndengué SA; Schinke R; Gatti F; Meyer HD; Jost R
    J Phys Chem A; 2012 Dec; 116(50):12260-70. PubMed ID: 23009265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of the photodissociation of ozone in the Hartley continuum; effect of vibrational excitation and O(1D) atom velocity distribution.
    Baloïtcha E; Balint-Kurti GG
    Phys Chem Chem Phys; 2005 Nov; 7(22):3829-33. PubMed ID: 16358032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics.
    Baloïtcha E; Balint-Kurti GG
    J Chem Phys; 2005 Jul; 123(1):014306. PubMed ID: 16035834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio potential energy surfaces, total absorption cross sections, and product quantum state distributions for the low-lying electronic states of N(2)O.
    Daud MN; Balint-Kurti GG; Brown A
    J Chem Phys; 2005 Feb; 122(5):54305. PubMed ID: 15740320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonyl sulfide isotopologues: ultraviolet absorption cross sections and stratospheric photolysis.
    Danielache SO; Nanbu S; Eskebjerg C; Johnson MS; Yoshida N
    J Chem Phys; 2009 Jul; 131(2):024307. PubMed ID: 19603991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photodissociation of ozone in the Hartley band: a theoretical analysis.
    Qu ZW; Zhu H; Grebenshchikov SY; Schinke R
    J Chem Phys; 2005 Aug; 123(7):074305. PubMed ID: 16229568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Theory of photodissociation of ozone in the Hartley continuum; effect of vibrational excitation and O(1D) atom velocity distribution" by E. Baloïtcha and G. G. Balint-Kurti, Phys. Chem. Chem. Phys., 2005, 7, 3829.
    Schinke R; Grebenshchikov SY
    Phys Chem Chem Phys; 2007 Aug; 9(30):4026-9. PubMed ID: 17646892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A full-dimensional coupled-surface study of the photodissociation dynamics of ammonia using the multiconfiguration time-dependent Hartree method.
    Giri K; Chapman E; Sanz CS; Worth G
    J Chem Phys; 2011 Jul; 135(4):044311. PubMed ID: 21806123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands.
    Grebenshchikov SY; Qu ZW; Zhu H; Schinke R
    Phys Chem Chem Phys; 2007 May; 9(17):2044-64. PubMed ID: 17464386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodissociation of ozone in the Hartley band: Product state and angular distributions.
    McBane GC; Nguyen LT; Schinke R
    J Chem Phys; 2010 Oct; 133(14):144312. PubMed ID: 20950005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodissociation of ozone in the Hartley band: Potential energy surfaces, nonadiabatic couplings, and singlet/triplet branching ratio.
    Schinke R; McBane GC
    J Chem Phys; 2010 Jan; 132(4):044305. PubMed ID: 20113031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm(-1): new observations and exhaustive review.
    Campargue A; Barbe A; De Backer-Barilly MR; Tyuterev VG; Kassi S
    Phys Chem Chem Phys; 2008 May; 10(20):2925-46. PubMed ID: 18473041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the Effective Ground State Potential Energy Function of Ozone from High-Resolution Infrared Spectra.
    Tyuterev VG; Tashkun S; Jensen P; Barbe A; Cours T
    J Mol Spectrosc; 1999 Nov; 198(1):57-76. PubMed ID: 10527781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodissociation of N2O: potential energy surfaces and absorption spectrum.
    Schinke R
    J Chem Phys; 2011 Feb; 134(6):064313. PubMed ID: 21322686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiconfiguration time-dependent Hartree approach to study the OH + H2 reaction.
    Bhattacharya S; Panda AN; Meyer HD
    J Chem Phys; 2010 Jun; 132(21):214304. PubMed ID: 20528019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HOOH UV spectrum: importance of the transition dipole moment and torsional motion from semiclassical calculations on an ab initio potential energy surface.
    Drozd GT; Melnichuk A; Donahue NM
    J Chem Phys; 2010 Feb; 132(8):084304. PubMed ID: 20192299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nu(1) and nu(3) Bands of the (17)O(16)O(17)O Isotopomer of Ozone.
    Perrin A; Flaud J; Valentin A; Camy-Peyret C; Gbaguidi H
    J Mol Spectrosc; 2000 Apr; 200(2):248-252. PubMed ID: 10708537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He.
    de Lange MJ; Stolte S; Taatjes CA; Kłos J; Groenenboom GC; van der Avoird A
    J Chem Phys; 2004 Dec; 121(23):11691-701. PubMed ID: 15634135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.