BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 20584082)

  • 1. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea.
    Mulligan C; Fischer M; Thomas GH
    FEMS Microbiol Rev; 2011 Jan; 35(1):68-86. PubMed ID: 20584082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea.
    Kelly DJ; Thomas GH
    FEMS Microbiol Rev; 2001 Aug; 25(4):405-24. PubMed ID: 11524131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity.
    Rosa LT; Bianconi ME; Thomas GH; Kelly DJ
    Front Cell Infect Microbiol; 2018; 8():33. PubMed ID: 29479520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding.
    Fischer M; Hopkins AP; Severi E; Hawkhead J; Bawdon D; Watts AG; Hubbard RE; Thomas GH
    J Biol Chem; 2015 Nov; 290(45):27113-27123. PubMed ID: 26342690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caught in a TRAP: substrate-binding proteins in secondary transport.
    Fischer M; Zhang QY; Hubbard RE; Thomas GH
    Trends Microbiol; 2010 Oct; 18(10):471-8. PubMed ID: 20656493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters.
    Rabus R; Jack DL; Kelly DJ; Saier MH
    Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3431-3445. PubMed ID: 10627041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization.
    Mulligan C; Kelly DJ; Thomas GH
    J Mol Microbiol Biotechnol; 2007; 12(3-4):218-26. PubMed ID: 17587870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of two Bordetella pertussis periplasmic receptors contribute to defining a novel pyroglutamic acid binding DctP subfamily.
    Rucktooa P; Antoine R; Herrou J; Huvent I; Locht C; Jacob-Dubuisson F; Villeret V; Bompard C
    J Mol Biol; 2007 Jun; 370(1):93-106. PubMed ID: 17499270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae.
    Mulligan C; Leech AP; Kelly DJ; Thomas GH
    J Biol Chem; 2012 Jan; 287(5):3598-608. PubMed ID: 22167185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.
    Severi E; Hosie AH; Hawkhead JA; Thomas GH
    FEMS Microbiol Lett; 2010 Mar; 304(1):47-54. PubMed ID: 20100283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tripartite tricarboxylate transporter (TTT) family.
    Winnen B; Hvorup RN; Saier MH
    Res Microbiol; 2003 Sep; 154(7):457-65. PubMed ID: 14499931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria.
    Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ
    J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.
    Paulsen IT; Nguyen L; Sliwinski MK; Rabus R; Saier MH
    J Mol Biol; 2000 Aug; 301(1):75-100. PubMed ID: 10926494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1.55 A structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata.
    Kuhlmann SI; Terwisscha van Scheltinga AC; Bienert R; Kunte HJ; Ziegler C
    Biochemistry; 2008 Sep; 47(36):9475-85. PubMed ID: 18702523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter.
    Peter MF; Ruland JA; Depping P; Schneberger N; Severi E; Moecking J; Gatterdam K; Tindall S; Durand A; Heinz V; Siebrasse JP; Koenig PA; Geyer M; Ziegler C; Kubitscheck U; Thomas GH; Hagelueken G
    Nat Commun; 2022 Aug; 13(1):4471. PubMed ID: 35927235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of membrane transport proteins for vitamins in bacteria and archaea.
    Jaehme M; Slotboom DJ
    Biochim Biophys Acta; 2015 Mar; 1850(3):565-76. PubMed ID: 24836521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRAPs: the 'elevator-with-an-operator' mechanism.
    Davies JS; Currie MJ; Dobson RCJ; Horne CR; North RA
    Trends Biochem Sci; 2024 Feb; 49(2):134-144. PubMed ID: 38102017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein transport in Archaea: Sec and twin arginine translocation pathways.
    Pohlschröder M; Giménez MI; Jarrell KF
    Curr Opin Microbiol; 2005 Dec; 8(6):713-9. PubMed ID: 16257258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-anchored substrate binding proteins are deployed in secondary TAXI transporters.
    Roden A; Engelin MK; Pos KM; Geertsma ER
    Biol Chem; 2023 Jun; 404(7):715-725. PubMed ID: 36916166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.