These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 20584602)
1. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Ge Y; Liu J; Tian G Bioresour Technol; 2011 Jan; 102(1):130-4. PubMed ID: 20584602 [TBL] [Abstract][Full Text] [Related]
2. Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions. Yoshimura T; Okada S; Honda M Bioresour Technol; 2013 Apr; 133():232-9. PubMed ID: 23428820 [TBL] [Abstract][Full Text] [Related]
3. Selection of microalgae for lipid production under high levels carbon dioxide. Yoo C; Jun SY; Lee JY; Ahn CY; Oh HM Bioresour Technol; 2010 Jan; 101 Suppl 1():S71-4. PubMed ID: 19362826 [TBL] [Abstract][Full Text] [Related]
4. Biomass production and nutrient uptake by Neochloris oleoabundans in an open trough system. Murray KE; Healy FG; McCord RS; Shields JA Appl Microbiol Biotechnol; 2011 Apr; 90(1):89-95. PubMed ID: 21184060 [TBL] [Abstract][Full Text] [Related]
5. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. Ranga Rao A; Sarada R; Ravishankar GA J Microbiol Biotechnol; 2007 Mar; 17(3):414-9. PubMed ID: 18050944 [TBL] [Abstract][Full Text] [Related]
6. Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Ranga Rao A; Ravishankar GA; Sarada R Bioresour Technol; 2012 Nov; 123():528-33. PubMed ID: 22940364 [TBL] [Abstract][Full Text] [Related]
7. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Cheng P; Ji B; Gao L; Zhang W; Wang J; Liu T Bioresour Technol; 2013 Jun; 138():95-100. PubMed ID: 23612166 [TBL] [Abstract][Full Text] [Related]
8. Effect of cobalt enrichment on growth and hydrocarbon accumulation of Botryococcus braunii with immobilized biofilm attached cultivation. Cheng P; Wang J; Liu T Bioresour Technol; 2015 Feb; 177():204-8. PubMed ID: 25496939 [TBL] [Abstract][Full Text] [Related]
9. Changes in the hydrocarbon-synthesizing activity during growth of Botryococcus braunii B70. Niitsu R; Kanazashi M; Matsuwaki I; Ikegami Y; Tanoi T; Kawachi M; Watanabe MM; Kato M Bioresour Technol; 2012 Apr; 109():297-9. PubMed ID: 21925877 [TBL] [Abstract][Full Text] [Related]
10. Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system. Liu J; Ge Y; Cheng H; Wu L; Tian G Bioresour Technol; 2013 Jul; 139():190-4. PubMed ID: 23660382 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837 [TBL] [Abstract][Full Text] [Related]
12. Hydrocarbon production in high density Botryococcus braunii race B continuous culture. Khatri W; Hendrix R; Niehaus T; Chappell J; Curtis WR Biotechnol Bioeng; 2014 Mar; 111(3):493-503. PubMed ID: 24122424 [TBL] [Abstract][Full Text] [Related]
13. Improvement of hydrocarbon recovery by spouting solvent into culture of Botryococcus braunii. Choi SP; Bahn SH; Sim SJ Bioprocess Biosyst Eng; 2013 Dec; 36(12):1977-85. PubMed ID: 23703677 [TBL] [Abstract][Full Text] [Related]
14. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359 [TBL] [Abstract][Full Text] [Related]
15. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas]. Yang X; Xiang W; Zhang F; Wu H; He H; Fan J Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278 [TBL] [Abstract][Full Text] [Related]
16. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Kumar K; Dasgupta CN; Nayak B; Lindblad P; Das D Bioresour Technol; 2011 Apr; 102(8):4945-53. PubMed ID: 21334885 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the biofuel potential of a newly isolated strain of the microalga Botryococcus braunii Kützing from Assam, India. Talukdar J; Kalita MC; Goswami BC Bioresour Technol; 2013 Dec; 149():268-75. PubMed ID: 24121368 [TBL] [Abstract][Full Text] [Related]
18. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation. Yeesang C; Cheirsilp B Appl Biochem Biotechnol; 2014 Sep; 174(1):116-29. PubMed ID: 24989454 [TBL] [Abstract][Full Text] [Related]
19. Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta). Song L; Qin JG; Su S; Xu J; Clarke S; Shan Y PLoS One; 2012; 7(7):e41459. PubMed ID: 22848502 [TBL] [Abstract][Full Text] [Related]
20. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Baba M; Kikuta F; Suzuki I; Watanabe MM; Shiraiwa Y Bioresour Technol; 2012 Apr; 109():266-70. PubMed ID: 21683581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]