BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20584917)

  • 1. DNA polymerases nu and theta are required for efficient immunoglobulin V gene diversification in chicken.
    Kohzaki M; Nishihara K; Hirota K; Sonoda E; Yoshimura M; Ekino S; Butler JE; Watanabe M; Halazonetis TD; Takeda S
    J Cell Biol; 2010 Jun; 189(7):1117-27. PubMed ID: 20584917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic evidence for single-strand lesions initiating Nbs1-dependent homologous recombination in diversification of Ig v in chicken B lymphocytes.
    Nakahara M; Sonoda E; Nojima K; Sale JE; Takenaka K; Kikuchi K; Taniguchi Y; Nakamura K; Sumitomo Y; Bree RT; Lowndes NF; Takeda S
    PLoS Genet; 2009 Jan; 5(1):e1000356. PubMed ID: 19180185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis.
    Kawamoto T; Araki K; Sonoda E; Yamashita YM; Harada K; Kikuchi K; Masutani C; Hanaoka F; Nozaki K; Hashimoto N; Takeda S
    Mol Cell; 2005 Dec; 20(5):793-9. PubMed ID: 16337602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brca1 in immunoglobulin gene conversion and somatic hypermutation.
    Longerich S; Orelli BJ; Martin RW; Bishop DK; Storb U
    DNA Repair (Amst); 2008 Feb; 7(2):253-66. PubMed ID: 18036997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching.
    Tsuda M; Ogawa S; Ooka M; Kobayashi K; Hirota K; Wakasugi M; Matsunaga T; Sakuma T; Yamamoto T; Chikuma S; Sasanuma H; Debatisse M; Doherty AJ; Fuchs RP; Takeda S
    PLoS One; 2019; 14(3):e0213383. PubMed ID: 30840704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPARTAN promotes genetic diversification of the immunoglobulin-variable gene locus in avian DT40 cells.
    Nakazato A; Kajita K; Ooka M; Akagawa R; Abe T; Takeda S; Branzei D; Hirota K
    DNA Repair (Amst); 2018 Aug; 68():50-57. PubMed ID: 29935364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerases eta and theta function in the same genetic pathway to generate mutations at A/T during somatic hypermutation of Ig genes.
    Masuda K; Ouchida R; Hikida M; Kurosaki T; Yokoi M; Masutani C; Seki M; Wood RD; Hanaoka F; O-Wang J
    J Biol Chem; 2007 Jun; 282(24):17387-94. PubMed ID: 17449470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation-induced cytidine deaminase-mediated hypermutation in the DT40 cell line.
    Arakawa H; Buerstedde JM
    Philos Trans R Soc Lond B Biol Sci; 2009 Mar; 364(1517):639-44. PubMed ID: 19008193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase theta contributes to the generation of C/G mutations during somatic hypermutation of Ig genes.
    Masuda K; Ouchida R; Takeuchi A; Saito T; Koseki H; Kawamura K; Tagawa M; Tokuhisa T; Azuma T; O-Wang J
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13986-91. PubMed ID: 16172387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of DNA polymerase theta results in decreased somatic hypermutation frequency and altered mutation patterns in Ig genes.
    Masuda K; Ouchida R; Hikida M; Nakayama M; Ohara O; Kurosaki T; O-Wang J
    DNA Repair (Amst); 2006 Nov; 5(11):1384-91. PubMed ID: 16890500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The BRCT domain of PARP-1 is required for immunoglobulin gene conversion.
    Paddock MN; Buelow BD; Takeda S; Scharenberg AM
    PLoS Biol; 2010 Jul; 8(7):e1000428. PubMed ID: 20652015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation.
    Sale JE; Calandrini DM; Takata M; Takeda S; Neuberger MS
    Nature; 2001 Aug; 412(6850):921-6. PubMed ID: 11528482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation.
    Zan H; Shima N; Xu Z; Al-Qahtani A; Evinger Iii AJ; Zhong Y; Schimenti JC; Casali P
    EMBO J; 2005 Nov; 24(21):3757-69. PubMed ID: 16222339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TET3 dioxygenase modulates gene conversion at the avian immunoglobulin variable region via demethylation of non-CpG sites in pseudogene templates.
    Takamura N; Seo H; Ohta K
    Genes Cells; 2021 Mar; 26(3):121-135. PubMed ID: 33421268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pold4, the fourth subunit of replicative polymerase δ, suppresses gene conversion in the immunoglobulin-variable gene in avian DT40 cells.
    Kojima K; Ooka M; Abe T; Hirota K
    DNA Repair (Amst); 2021 Apr; 100():103056. PubMed ID: 33588156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoglobulin gene conversion or hypermutation: that's the question.
    Buerstedde JM; Arakawa H
    Subcell Biochem; 2006; 40():11-24. PubMed ID: 17623897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAD51 paralogs promote homology-directed repair at diversifying immunoglobulin V regions.
    Ordinario EC; Yabuki M; Handa P; Cummings WJ; Maizels N
    BMC Mol Biol; 2009 Oct; 10():98. PubMed ID: 19863810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene conversion-like sequence transfers between transgenic antibody V genes are independent of RAD54.
    D'Avirro N; Truong D; Luong M; Kanaar R; Selsing E
    J Immunol; 2002 Sep; 169(6):3069-75. PubMed ID: 12218123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions.
    Yabuki M; Fujii MM; Maizels N
    Nat Immunol; 2005 Jul; 6(7):730-6. PubMed ID: 15937485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An update on the role of translesion synthesis DNA polymerases in Ig hypermutation.
    Diaz M; Lawrence C
    Trends Immunol; 2005 Apr; 26(4):215-20. PubMed ID: 15797512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.