These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20585160)

  • 61. Defect Localization and Nanofabrication for Conductive Structures with Voltage Contrast in Helium Ion Microscopy.
    Xia D; McVey S; Huynh C; Kuehn W
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5509-5516. PubMed ID: 30644713
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Exploring the conduction in atomic-sized metallic constrictions created by controlled ion etching.
    Fernández-Pacheco A; De Teresa JM; Córdoba R; Ibarra MR
    Nanotechnology; 2008 Oct; 19(41):415302. PubMed ID: 21832642
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High fidelity functional patterns of an extracellular matrix protein by electron beam-based inactivation.
    Rundqvist J; Mendoza B; Werbin JL; Heinz WF; Lemmon C; Romer LH; Haviland DB; Hoh JH
    J Am Chem Soc; 2007 Jan; 129(1):59-67. PubMed ID: 17199283
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of beam diameter on the electron skirt in a high pressure scanning electron microscope.
    Belkorissat R; Kadoun A; Khelifa B; Mathieu C
    Micron; 2004; 35(7):543-7. PubMed ID: 15219900
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching.
    Han CY; Willing GA; Xiao Z; Wang HH
    Langmuir; 2007 Jan; 23(3):1564-8. PubMed ID: 17241088
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assistedion-beam-etching step.
    Däschner W; Larsson M; Lee SH
    Appl Opt; 1995 May; 34(14):2534-9. PubMed ID: 21052389
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fabrication of a versatile substrate for finding samples on the nanometer scale.
    Nowak DB; Vattipalli MK; Abramson JJ; Sánchez EJ
    J Microsc; 2008 Apr; 230(Pt 1):32-41. PubMed ID: 18387037
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures.
    Schilling A; Adams T; Bowman RM; Gregg JM
    Nanotechnology; 2007 Jan; 18(3):035301. PubMed ID: 19636116
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct fabrication of nanopores in a metal foil using focused ion beam with in situ measurements of the penetrating ion beam current.
    Nagoshi K; Honda J; Sakaue H; Takahagi T; Suzuki H
    Rev Sci Instrum; 2009 Dec; 80(12):125102. PubMed ID: 20059165
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The fabrication of aspherical microlenses using focused ion-beam techniques.
    Langridge MT; Cox DC; Webb RP; Stolojan V
    Micron; 2014 Feb; 57():56-66. PubMed ID: 24239415
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of the charging effect in a ZrO2 sintered body by Ga ion beam irradiation.
    Kim KH; Kim JJ; Suzuki T; Shindo D
    J Electron Microsc (Tokyo); 2008 Apr; 57(2):53-7. PubMed ID: 18322297
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging.
    De Winter DA; Schneijdenberg CT; Lebbink MN; Lich B; Verkleij AJ; Drury MR; Humbel BM
    J Microsc; 2009 Mar; 233(3):372-83. PubMed ID: 19250458
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles.
    Kaegi R; Gasser P
    J Microsc; 2006 Nov; 224(Pt 2):140-5. PubMed ID: 17204060
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metal-assisted electrochemical etching of silicon.
    Huang ZP; Geyer N; Liu LF; Li MY; Zhong P
    Nanotechnology; 2010 Nov; 21(46):465301. PubMed ID: 20972316
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers.
    Chai J; Walker G; Wang L; Massoubre D; Tan SH; Chaik K; Hold L; Iacopi A
    Sci Rep; 2015 Dec; 5():17811. PubMed ID: 26634813
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Large-area regular nanodomain patterning in He-irradiated lithium niobate crystals.
    Ofan A; Lilienblum M; Gaathon O; Sehrbrock A; Hoffmann A; Bakhru S; Bakhru H; Irsen S; Osgood RM; Soergel E
    Nanotechnology; 2011 Jul; 22(28):285309. PubMed ID: 21646696
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamic surface site activation: a rate limiting process in electron beam induced etching.
    Martin AA; Phillips MR; Toth M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8002-7. PubMed ID: 23876097
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.
    Suga M; Nishiyama H; Konyuba Y; Iwamatsu S; Watanabe Y; Yoshiura C; Ueda T; Sato C
    Ultramicroscopy; 2011 Dec; 111(12):1650-8. PubMed ID: 22088441
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inverted end-Hall-type low-energy high-current gaseous ion source.
    Oks EM; Vizir AV; Shandrikov MV; Yushkov GY; Grishin DM; Anders A; Baldwin DA
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02B302. PubMed ID: 18315168
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam.
    Her EK; Chung HS; Moon MW; Oh KH
    Nanotechnology; 2009 Jul; 20(28):285301. PubMed ID: 19546496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.