These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Paiman S; Gao Q; Tan HH; Jagadish C; Pemasiri K; Montazeri M; Jackson HE; Smith LM; Yarrison-Rice JM; Zhang X; Zou J Nanotechnology; 2009 Jun; 20(22):225606. PubMed ID: 19436086 [TBL] [Abstract][Full Text] [Related]
6. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Ercolani D; Rossi F; Li A; Roddaro S; Grillo V; Salviati G; Beltram F; Sorba L Nanotechnology; 2009 Dec; 20(50):505605. PubMed ID: 19907063 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: self-assembled multilayers on evaporated gold island films. Doron-Mor I; Cohen H; Barkay Z; Shanzer A; Vaskevich A; Rubinstein I Chemistry; 2005 Sep; 11(19):5555-62. PubMed ID: 16007692 [TBL] [Abstract][Full Text] [Related]
8. Evidence of space charge regions within semiconductor nanowires from Kelvin probe force microscopy. Narváez AC; Chiaramonte T; Vicaro KO; Clerici JH; Cotta MA Nanotechnology; 2009 Nov; 20(46):465705. PubMed ID: 19843990 [TBL] [Abstract][Full Text] [Related]
9. Correlated micro-photoluminescence and electron microscopy studies of the same individual heterostructured semiconductor nanowires. Todorovic J; Moses AF; Karlberg T; Olk P; Dheeraj DL; Fimland BO; Weman H; van Helvoort AT Nanotechnology; 2011 Aug; 22(32):325707. PubMed ID: 21775779 [TBL] [Abstract][Full Text] [Related]
11. Control and understanding of kink formation in InAs-InP heterostructure nanowires. Fahlvik Svensson S; Jeppesen S; Thelander C; Samuelson L; Linke H; Dick KA Nanotechnology; 2013 Aug; 24(34):345601. PubMed ID: 23900037 [TBL] [Abstract][Full Text] [Related]
12. Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy. Zannier V; Rossi F; Ercolani D; Sorba L Nanotechnology; 2019 Mar; 30(9):094003. PubMed ID: 30537697 [TBL] [Abstract][Full Text] [Related]
13. Wurtzite-zincblende superlattices in InAs nanowires using a supply interruption method. Bolinsson J; Caroff P; Mandl B; Dick KA Nanotechnology; 2011 Jul; 22(26):265606. PubMed ID: 21576775 [TBL] [Abstract][Full Text] [Related]
14. Growth of InAs/InAsSb heterostructured nanowires. Ercolani D; Gemmi M; Nasi L; Rossi F; Pea M; Li A; Salviati G; Beltram F; Sorba L Nanotechnology; 2012 Mar; 23(11):115606. PubMed ID: 22381938 [TBL] [Abstract][Full Text] [Related]
15. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts. Sierra-Sastre Y; Dayeh SA; Picraux ST; Batt CA ACS Nano; 2010 Feb; 4(2):1209-17. PubMed ID: 20128609 [TBL] [Abstract][Full Text] [Related]
16. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition. Zhang XT; Liu Z; Li Q; Hark SK J Phys Chem B; 2005 Sep; 109(38):17913-6. PubMed ID: 16853298 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and raman scattering from Zn(1-x)Mn(x)S diluted magnetic semiconductor nanowires. Wu J; Gutierrez HR; Eklund PC J Nanosci Nanotechnol; 2008 Jan; 8(1):393-9. PubMed ID: 18468089 [TBL] [Abstract][Full Text] [Related]
18. Compositional analysis of mixed-cation-anion III-V semiconductor interfaces using phase retrieval high-resolution transmission electron microscopy. Mahalingam K; Eyink KG; Brown GJ; Dorsey DL; Kisielowski CF; Thust A J Microsc; 2008 Jun; 230(Pt 3):372-81. PubMed ID: 18503662 [TBL] [Abstract][Full Text] [Related]
19. Linear heterostructured Ni Sheehan M; Ramasse QM; Geaney H; Ryan KM Nanoscale; 2018 Oct; 10(40):19182-19187. PubMed ID: 30302485 [TBL] [Abstract][Full Text] [Related]
20. Selective-area vapour-liquid-solid growth of InP nanowires. Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]