These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20585375)

  • 61. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats--possible roles of brain-derived neurotrophic factor, TrkB and p75 neurotrophin receptor.
    Li F; Li L; Song XY; Zhong JH; Luo XG; Xian CJ; Zhou XF
    Eur J Neurosci; 2009 Oct; 30(7):1280-96. PubMed ID: 19788572
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.
    Hu J; Lang Y; Zhang T; Ni S; Lu H
    Neuroscience; 2016 Jul; 328():40-9. PubMed ID: 27132229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo.
    Apasu JE; Schuette D; LaRanger R; Steinle JA; Nguyen LD; Grosshans HK; Zhang M; Cai WL; Yan Q; Robert ME; Mak M; Ehrlich BE
    FASEB J; 2019 Apr; 33(4):4802-4813. PubMed ID: 30592625
    [TBL] [Abstract][Full Text] [Related]  

  • 64. AAV-mediated expression of BAG1 and ROCK2-shRNA promote neuronal survival and axonal sprouting in a rat model of rubrospinal tract injury.
    Challagundla M; Koch JC; Ribas VT; Michel U; Kügler S; Ostendorf T; Bradke F; Müller HW; Bähr M; Lingor P
    J Neurochem; 2015 Jul; 134(2):261-75. PubMed ID: 25807858
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.
    Chen Q; Shine HD
    J Neurosci Res; 2013 Oct; 91(10):1280-91. PubMed ID: 23907999
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice.
    Tsujioka H; Yamashita T
    BMC Genomics; 2019 Jul; 20(1):619. PubMed ID: 31362699
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats.
    Liu Z; Li Y; Qu R; Shen L; Gao Q; Zhang X; Lu M; Savant-Bhonsale S; Borneman J; Chopp M
    Brain Res; 2007 May; 1149():172-80. PubMed ID: 17362881
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127.
    Wu HF; Cen JS; Zhong Q; Chen L; Wang J; Deng DY; Wan Y
    Biomaterials; 2013 Feb; 34(6):1686-700. PubMed ID: 23211450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma.
    Sekine Y; Algarate PT; Cafferty WBJ; Strittmatter SM
    J Neurosci; 2019 Apr; 39(17):3204-3216. PubMed ID: 30804090
    [TBL] [Abstract][Full Text] [Related]  

  • 70. IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation.
    Yang P; Wen H; Ou S; Cui J; Fan D
    Exp Neurol; 2012 Jul; 236(1):19-27. PubMed ID: 22504113
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury.
    Filli L; Engmann AK; Zörner B; Weinmann O; Moraitis T; Gullo M; Kasper H; Schneider R; Schwab ME
    J Neurosci; 2014 Oct; 34(40):13399-410. PubMed ID: 25274818
    [TBL] [Abstract][Full Text] [Related]  

  • 72. AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury.
    Li WY; Wang Y; Zhai FG; Sun P; Cheng YX; Deng LX; Wang ZY
    Neural Plast; 2017; 2017():1621629. PubMed ID: 28884027
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Behavioral recovery after a spinal deafferentation injury in monkeys does not correlate with extent of corticospinal sprouting.
    Crowley M; Lilak A; Garner JP; Darian-Smith C
    Behav Brain Res; 2022 Jan; 416():113533. PubMed ID: 34453971
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mice lacking L1 cell adhesion molecule have deficits in locomotion and exhibit enhanced corticospinal tract sprouting following mild contusion injury to the spinal cord.
    Jakeman LB; Chen Y; Lucin KM; McTigue DM
    Eur J Neurosci; 2006 Apr; 23(8):1997-2011. PubMed ID: 16630048
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced axonal transport: A novel form of "plasticity" after primate and rodent spinal cord injury.
    Brock JH; Rosenzweig ES; Yang H; Tuszynski MH
    Exp Neurol; 2018 Mar; 301(Pt A):59-69. PubMed ID: 29277625
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys.
    Darian-Smith C; Lilak A; Garner J; Irvine KA
    J Neurosci; 2014 Sep; 34(37):12267-79. PubMed ID: 25209269
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regenerating corticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti-Nogo-A antibody IN-1.
    Fouad K; Klusman I; Schwab ME
    Eur J Neurosci; 2004 Nov; 20(9):2479-82. PubMed ID: 15525289
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.
    Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME
    Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury.
    Nakamura Y; Ueno M; Niehaus JK; Lang RA; Zheng Y; Yoshida Y
    J Neurosci; 2021 Dec; 41(50):10247-10260. PubMed ID: 34759029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.