BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20585471)

  • 41. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review.
    Silva AT; Figueiredo R; Azenha M; Jorge PAS; Pereira CM; Ribeiro JA
    ACS Sens; 2023 Aug; 8(8):2898-2920. PubMed ID: 37556357
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymer nanoparticle hydrogels with autonomous affinity switching for the protection of proteins from thermal stress.
    Beierle JM; Yoshimatsu K; Chou B; Mathews MA; Lesel BK; Shea KJ
    Angew Chem Int Ed Engl; 2014 Aug; 53(35):9275-9. PubMed ID: 25044477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloud point-dispersive μ-solid phase extraction of hydrophobic organic compounds onto highly hydrophobic core-shell Fe₂O₃@C magnetic nanoparticles.
    Giokas DL; Zhu Q; Pan Q; Chisvert A
    J Chromatogr A; 2012 Aug; 1251():33-39. PubMed ID: 22784694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogel nanoparticles in drug delivery.
    Hamidi M; Azadi A; Rafiei P
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1638-49. PubMed ID: 18840488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA.
    Tripp DW; Rocke TE; Streich SP; Brown NL; Fernandez JR; Miller MW
    J Wildl Dis; 2014 Apr; 50(2):224-34. PubMed ID: 24484490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance comparison of four types of target enrichment baits for exome DNA sequencing.
    Zhou J; Zhang M; Li X; Wang Z; Pan D; Shi Y
    Hereditas; 2021 Feb; 158(1):10. PubMed ID: 33597004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermo-Responsive Hydrogels Encapsulating Targeted Core-Shell Nanoparticles as Injectable Drug Delivery Systems.
    Ertugral-Samgar EG; Ozmen AM; Gok O
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Preparation of multi-functional magnetic nanoparticles for harvesting low-molecular-weight glycoproteins].
    Dou P; Xiang Y; Liang L; Liu Z
    Se Pu; 2021 Oct; 39(10):1102-1110. PubMed ID: 34505432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of Bait Uptake by Badgers, Using Non-invasive Methods, in the Perspective of Oral Vaccination Against Bovine Tuberculosis in a French Infected Area.
    Payne A; Ruette S; Jacquier M; Richomme C; Lesellier S; Middleton S; Duhayer J; Rossi S
    Front Vet Sci; 2022; 9():787932. PubMed ID: 35359678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oral bait preferences and feasibility of oral rabies vaccination in Bangladeshi dogs.
    Bonwitt J; Bonaparte S; Blanton J; Gibson AD; Hoque M; Kennedy E; Islam K; Siddiqi UR; Wallace RM; Azam S
    Vaccine; 2020 Jul; 38(32):5021-5026. PubMed ID: 32513512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.
    Lu L; Qian Y; Wang L; Ma K; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1944-50. PubMed ID: 24480015
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Taking the bait: Developing a bait delivery system to target free-ranging crocodiles and varanid lizards with a novel conservation strategy.
    Aiyer A; Bunuba Rangers ; Bell T; Shine R; Somaweera R; Bruny M; Ward-Fear G
    Ecol Evol; 2022 Jul; 12(6):e8933. PubMed ID: 35784020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of smart core-shell nanoparticle-based sensors for the point-of-care detection of alpha amylase in diagnostics and forensics.
    Adhikary RR; Banerjee R
    Biosens Bioelectron; 2021 Jul; 184():113244. PubMed ID: 33934052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gold-silver core-shell nanoparticle-based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin.
    Rana S; Bharti A; Singh S; Bhatnagar A; Prabhakar N
    Mikrochim Acta; 2020 Oct; 187(11):626. PubMed ID: 33095336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A visually distinguishable light interfering bioresponsive silica nanoparticle hydrogel sensor fabricated through the molecular imprinting technique.
    Jinn WS; Shin MK; Kang B; Oh S; Moon CE; Mun B; Ji YW; Lee HK; Haam S
    J Mater Chem B; 2019 Dec; 7(45):7120-7128. PubMed ID: 31602453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides:; drug incorporation and in vitro release.
    Chaw CS; Chooi KW; Liu XM; Tan CW; Wang L; Yang YY
    Biomaterials; 2004 Aug; 25(18):4297-308. PubMed ID: 15046920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shrinkable Hydrogel-Enhanced Biomarker Detection with X-ray Fluorescent Nanoparticles.
    Zheng Y; Huo R; Su M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Field evaluation of two bait delivery systems for the oral immunization of dogs against rabies in Tunisia.
    Matter HC; Schumacher CL; Kharmachi H; Hammami S; Tlatli A; Jemli J; Mrabet L; Meslin FX; Aubert MF; Neuenschwander BE; Hicheri KE
    Vaccine; 1998 Apr; 16(7):657-65. PubMed ID: 9562683
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Does size matter? Study of performance of pseudo-ELISAs based on molecularly imprinted polymer nanoparticles prepared for analytes of different sizes.
    Cáceres C; Canfarotta F; Chianella I; Pereira E; Moczko E; Esen C; Guerreiro A; Piletska E; Whitcombe MJ; Piletsky SA
    Analyst; 2016 Feb; 141(4):1405-12. PubMed ID: 26796951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design Principles for Thermoresponsive Core-Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology.
    Reimhult E; Schroffenegger M; Lassenberger A
    Langmuir; 2019 Jun; 35(22):7092-7104. PubMed ID: 31035760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.