These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 20585559)

  • 21. Titan cell production enhances the virulence of Cryptococcus neoformans.
    Crabtree JN; Okagaki LH; Wiesner DL; Strain AK; Nielsen JN; Nielsen K
    Infect Immun; 2012 Nov; 80(11):3776-85. PubMed ID: 22890995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cdk8 and Ssn801 Regulate Oxidative Stress Resistance and Virulence in Cryptococcus neoformans.
    Chang AL; Kang Y; Doering TL
    mBio; 2019 Feb; 10(1):. PubMed ID: 30755515
    [No Abstract]   [Full Text] [Related]  

  • 23. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells.
    Vu K; Eigenheer RA; Phinney BS; Gelli A
    Infect Immun; 2013 Sep; 81(9):3139-47. PubMed ID: 23774597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection.
    Xu J; Flaczyk A; Neal LM; Fa Z; Eastman AJ; Malachowski AN; Cheng D; Moore BB; Curtis JL; Osterholzer JJ; Olszewski MA
    J Immunol; 2017 May; 198(9):3548-3557. PubMed ID: 28298522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection.
    Huang SH; Wu CH; Chang YC; Kwon-Chung KJ; Brown RJ; Jong A
    PLoS One; 2012; 7(11):e48570. PubMed ID: 23144903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans.
    Subramaniam KS; Datta K; Quintero E; Manix C; Marks MS; Pirofski LA
    J Immunol; 2010 May; 184(10):5755-67. PubMed ID: 20404271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of brain microvascular endothelial cell urokinase expression by Cryptococcus neoformans facilitates blood-brain barrier invasion.
    Stie J; Fox D
    PLoS One; 2012; 7(11):e49402. PubMed ID: 23145170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection.
    Eastman AJ; Osterholzer JJ; Olszewski MA
    Future Microbiol; 2015; 10(11):1837-57. PubMed ID: 26597428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice.
    Waterman SR; Hacham M; Panepinto J; Hu G; Shin S; Williamson PR
    Infect Immun; 2007 Feb; 75(2):714-22. PubMed ID: 17101662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo analysis of immune responses to Cryptococcus neoformans--role of interferon-gamma in host resistance.
    Axton PJ; Bancroft GJ
    Biochem Soc Trans; 1997 May; 25(2):276S. PubMed ID: 9191320
    [No Abstract]   [Full Text] [Related]  

  • 31. Cryptococcus neoformans activates RhoGTPase proteins followed by protein kinase C, focal adhesion kinase, and ezrin to promote traversal across the blood-brain barrier.
    Kim JC; Crary B; Chang YC; Kwon-Chung KJ; Kim KJ
    J Biol Chem; 2012 Oct; 287(43):36147-57. PubMed ID: 22898813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The link between morphotype transition and virulence in Cryptococcus neoformans.
    Wang L; Zhai B; Lin X
    PLoS Pathog; 2012; 8(6):e1002765. PubMed ID: 22737071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection.
    Bojarczuk A; Miller KA; Hotham R; Lewis A; Ogryzko NV; Kamuyango AA; Frost H; Gibson RH; Stillman E; May RC; Renshaw SA; Johnston SA
    Sci Rep; 2016 Feb; 6():21489. PubMed ID: 26887656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1.
    Walsh NM; Wuthrich M; Wang H; Klein B; Hull CM
    PLoS One; 2017; 12(3):e0173866. PubMed ID: 28282442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection.
    Szymczak WA; Davis MJ; Lundy SK; Dufaud C; Olszewski M; Pirofski LA
    mBio; 2013 Jul; 4(4):. PubMed ID: 23820392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Cyclin Cln1 Controls Polyploid Titan Cell Formation following a Stress-Induced G
    Altamirano S; Li Z; Fu MS; Ding M; Fulton SR; Yoder JM; Tran V; Nielsen K
    mBio; 2021 Oct; 12(5):e0250921. PubMed ID: 34634930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of host immune responses to pulmonary cryptococcosis using a temperature-sensitive C. neoformans calcineurin A mutant strain.
    Wormley FL; Cox GM; Perfect JR
    Microb Pathog; 2005; 38(2-3):113-23. PubMed ID: 15748813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion.
    Tenor JL; Oehlers SH; Yang JL; Tobin DM; Perfect JR
    mBio; 2015 Sep; 6(5):e01425-15. PubMed ID: 26419880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection.
    Dan JM; Kelly RM; Lee CK; Levitz SM
    Infect Immun; 2008 Jun; 76(6):2362-7. PubMed ID: 18391001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis.
    Wozniak KL; Vyas JM; Levitz SM
    Infect Immun; 2006 Jul; 74(7):3817-24. PubMed ID: 16790753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.