BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20586088)

  • 21. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid.
    Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R
    ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valeric biofuels: a platform of cellulosic transportation fuels.
    Lange JP; Price R; Ayoub PM; Louis J; Petrus L; Clarke L; Gosselink H
    Angew Chem Int Ed Engl; 2010 Jun; 49(26):4479-83. PubMed ID: 20446282
    [No Abstract]   [Full Text] [Related]  

  • 24. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts.
    Du XL; Bi QY; Liu YM; Cao Y; Fan KN
    ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.
    Tabasso S; Grillo G; Carnaroglio D; Calcio Gaudino E; Cravotto G
    Molecules; 2016 Mar; 21(4):413. PubMed ID: 27023511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to gamma-valerolactone in CO(2).
    Bourne RA; Stevens JG; Ke J; Poliakoff M
    Chem Commun (Camb); 2007 Nov; (44):4632-4. PubMed ID: 17989815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomass derived efficient conversion of levulinic acid for sustainable production of γ-valerolactone over cobalt based catalyst.
    Barla MK; Velagala RR; Minpoor S; Madduluri VR; Srinivasu P
    J Hazard Mater; 2021 Mar; 405():123335. PubMed ID: 33317894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol.
    Li M; Li G; Li N; Wang A; Dong W; Wang X; Cong Y
    Chem Commun (Camb); 2014 Feb; 50(12):1414-6. PubMed ID: 24382493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atom-economical synthesis of γ-valerolactone with self-supplied hydrogen from methanol.
    Li Z; Tang X; Jiang Y; Wang Y; Zuo M; Chen W; Zeng X; Sun Y; Lin L
    Chem Commun (Camb); 2015 Nov; 51(91):16320-3. PubMed ID: 26403664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Coupling of Biomass-Derived Acids: New C
    Wu L; Mascal M; Farmer TJ; Arnaud SP; Wong Chang MA
    ChemSusChem; 2017 Jan; 10(1):166-170. PubMed ID: 27873475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites.
    Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C
    Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective hydrogenation of furan-containing condensation products as a source of biomass-derived diesel additives.
    Balakrishnan M; Sacia ER; Bell AT
    ChemSusChem; 2014 Oct; 7(10):2796-800. PubMed ID: 25169952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids.
    Li K; Bai L; Amaniampong PN; Jia X; Lee JM; Yang Y
    ChemSusChem; 2014 Sep; 7(9):2670-7. PubMed ID: 25110998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion.
    Feng Y; Long S; Tang X; Sun Y; Luque R; Zeng X; Lin L
    Chem Soc Rev; 2021 May; 50(10):6042-6093. PubMed ID: 34027943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts.
    Upare PP; Lee JM; Hwang YK; Hwang DW; Lee JH; Halligudi SB; Hwang JS; Chang JS
    ChemSusChem; 2011 Dec; 4(12):1749-52. PubMed ID: 22114041
    [No Abstract]   [Full Text] [Related]  

  • 38. New Insights into the Reactivity of Biomass with Butenes for the Synthesis of Butyl Levulinates.
    Démolis A; Eternot M; Essayem N; Rataboul F
    ChemSusChem; 2017 Jun; 10(12):2612-2617. PubMed ID: 28464524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic conversion of biomass-derived carbohydrates into gamma-valerolactone without using an external H2 supply.
    Deng L; Li J; Lai DM; Fu Y; Guo QX
    Angew Chem Int Ed Engl; 2009; 48(35):6529-32. PubMed ID: 19630045
    [No Abstract]   [Full Text] [Related]  

  • 40. Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.
    Xin L; Zhang Z; Qi J; Chadderdon DJ; Qiu Y; Warsko KM; Li W
    ChemSusChem; 2013 Apr; 6(4):674-86. PubMed ID: 23457116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.