These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20586409)

  • 21. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation.
    Yanai A; Grajower M; Lerman GM; Hentschel M; Giessen H; Levy U
    ACS Nano; 2014 May; 8(5):4969-74. PubMed ID: 24758590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances.
    Zhang S; Zhu X; Xiao W; Shi H; Wang Y; Chen Z; Chen Y; Sun K; Muskens OL; De Groot CH; Liu SD; Duan H
    Nanotechnology; 2020 Aug; 31(32):325202. PubMed ID: 32340011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
    Ahmadivand A; Pala N
    J Opt Soc Am A Opt Image Sci Vis; 2015 Feb; 32(2):204-12. PubMed ID: 26366591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers.
    König M; Rahmani M; Zhang L; Lei DY; Roschuk TR; Giannini V; Qiu CW; Hong M; Schlücker S; Maier SA
    ACS Nano; 2014 Sep; 8(9):9188-98. PubMed ID: 25136980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers.
    Bautista G; Dreser C; Zang X; Kern DP; Kauranen M; Fleischer M
    Nano Lett; 2018 Apr; 18(4):2571-2580. PubMed ID: 29584937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons.
    Hentschel M; Wu L; Schäferling M; Bai P; Li EP; Giessen H
    ACS Nano; 2012 Nov; 6(11):10355-65. PubMed ID: 23078518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic sphere-on-plane systems with semiconducting polymer spacer layers.
    Yu B; Tracey JI; Cheng Z; Vacha M; O'Carroll DM
    Phys Chem Chem Phys; 2018 May; 20(17):11749-11757. PubMed ID: 29651496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances.
    Gallinet B; Martin OJ
    ACS Nano; 2011 Nov; 5(11):8999-9008. PubMed ID: 22026329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface.
    Nicolas R; Lévêque G; Marae-Djouda J; Montay G; Madi Y; Plain J; Herro Z; Kazan M; Adam PM; Maurer T
    Sci Rep; 2015 Sep; 5():14419. PubMed ID: 26399425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters.
    Dregely D; Hentschel M; Giessen H
    ACS Nano; 2011 Oct; 5(10):8202-11. PubMed ID: 21879759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating and Manipulating High Quality Factors of Fano Resonance in Nanoring Resonator by Stacking a Half Nanoring.
    Qin M; Wang L; Zhai X; Chen D; Xia S
    Nanoscale Res Lett; 2017 Nov; 12(1):578. PubMed ID: 29098493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape.
    Rahmani M; Lei DY; Giannini V; Lukiyanchuk B; Ranjbar M; Liew TY; Hong M; Maier SA
    Nano Lett; 2012 Apr; 12(4):2101-6. PubMed ID: 22448815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental study on the transition of plasmonic resonance modes in double-ring dimers by conductive junctions in the terahertz regime.
    Zhang H; Li C; Zhang C; Zhang X; Gu J; Jin B; Han J; Zhang W
    Opt Express; 2016 Nov; 24(24):27415-27422. PubMed ID: 27906313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography.
    Zhao J; Frank B; Burger S; Giessen H
    ACS Nano; 2011 Nov; 5(11):9009-16. PubMed ID: 21958436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass-determining role in the electrophoretic separation of colloidal plasmonic nanoparticle oligomers.
    Cao A; Tan J; Liu D; Chen Z; Dou L; Liu Z; Li Y
    Nanoscale; 2022 Oct; 14(38):14161-14168. PubMed ID: 36111667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.