BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20586462)

  • 1. Thermodynamic characterization of acacia gum-beta-lactoglobulin complex coacervation.
    Aberkane L; Jasniewski J; Gaiani C; Scher J; Sanchez C
    Langmuir; 2010 Aug; 26(15):12523-33. PubMed ID: 20586462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism.
    Sanchez C; Mekhloufi G; Renard D
    J Colloid Interface Sci; 2006 Jul; 299(2):867-73. PubMed ID: 16530214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Induced structural transitions during complexation and coacervation of beta-lactoglobulin and acacia gum.
    Mekhloufi G; Sanchez C; Renard D; Guillemin S; Hardy J
    Langmuir; 2005 Jan; 21(1):386-94. PubMed ID: 15620329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2.
    Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME
    Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties.
    Li Y; Zhang X; Zhao Y; Ding J; Lin S
    Food Res Int; 2018 May; 107():596-604. PubMed ID: 29580524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.
    Engelhardt K; Weichsel U; Kraft E; Segets D; Peukert W; Braunschweig B
    J Phys Chem B; 2014 Apr; 118(15):4098-105. PubMed ID: 24678897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex coacervation of β-lactoglobulin - κ-carrageenan aqueous mixtures as affected by polysaccharide sonication.
    Hosseini SM; Emam-Djomeh Z; Razavi SH; Moosavi-Movahedi AA; Saboury AA; Mohammadifar MA; Farahnaky A; Atri MS; Van der Meeren P
    Food Chem; 2013 Nov; 141(1):215-22. PubMed ID: 23768350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic interaction and complex formation between gum arabic and bovine serum albumin.
    Vinayahan T; Williams PA; Phillips GO
    Biomacromolecules; 2010 Dec; 11(12):3367-74. PubMed ID: 21067247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and structure of protein-polysaccharide coacervates in the presence of protein aggregates.
    Sanchez C; Renard D
    Int J Pharm; 2002 Aug; 242(1-2):319-24. PubMed ID: 12176271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and thermodynamic properties of the instability of synthetic azo colorants in gum arabic solutions.
    Fang Y; Al-Assaf S; Sakata M; Phillips GO; Schultz M; Monnier V
    J Agric Food Chem; 2007 Oct; 55(22):9274-82. PubMed ID: 17910512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of heat-induced beta-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate.
    Jung JM; Savin G; Pouzot M; Schmitt C; Mezzenga R
    Biomacromolecules; 2008 Sep; 9(9):2477-86. PubMed ID: 18698816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex coacervation of whey proteins and gum arabic.
    Weinbreck F; de Vries R; Schrooyen P; de Kruif CG
    Biomacromolecules; 2003; 4(2):293-303. PubMed ID: 12625724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biopolymers phase separation monitored by a plasmonic sensor.
    Akil-Jradi S; Jradi S; Plain J; Bijeon JL; Sanchez C; Bachelot R; Royer P
    Chem Commun (Camb); 2011 Feb; 47(8):2444-6. PubMed ID: 21170438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of formation and functional properties of conjugates prepared by dry-state incubation of beta-lactoglobulin/acacia gum electrostatic complexes.
    Schmitt C; Bovay C; Frossard P
    J Agric Food Chem; 2005 Nov; 53(23):9089-99. PubMed ID: 16277407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of β-lactoglobulin and the soluble fraction of gum tragacanth in aqueous medium.
    Firooz MH; Mohammadifar MA; Haratian P
    Int J Biol Macromol; 2012 May; 50(4):925-31. PubMed ID: 22390848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and conformational changes upon complexation of a phenothiazine drug with human serum albumin.
    Cheema MA; Taboada P; Barbosa S; Castro E; Siddiq M; Mosquera V
    Biomacromolecules; 2007 Aug; 8(8):2576-85. PubMed ID: 17592874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.
    Ye A; Flanagan J; Singh H
    Biopolymers; 2006 Jun; 82(2):121-33. PubMed ID: 16453308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity.
    Xu Y; Mazzawi M; Chen K; Sun L; Dubin PL
    Biomacromolecules; 2011 May; 12(5):1512-22. PubMed ID: 21413681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.