BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20586472)

  • 1. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2010 Aug; 44(15):5999-6005. PubMed ID: 20586472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2011 Feb; 45(4):1737-43. PubMed ID: 21222477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO
    Jun YS; Zhang L; Min Y; Li Q
    Acc Chem Res; 2017 Jul; 50(7):1521-1529. PubMed ID: 28686035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.
    Tenney CM; Cygan RT
    Environ Sci Technol; 2014; 48(3):2035-42. PubMed ID: 24410258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotite dissolution in brine at varied temperatures and CO2 pressures: its activation energy and potential CO2 intercalation.
    Hu Y; Jun YS
    Langmuir; 2012 Oct; 28(41):14633-41. PubMed ID: 22989382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive Reactivities at Biotite Edge and Basal Planes in the Presence of Organic Ligands: Implications for Organic-Rich Geologic CO2 Sequestration.
    Zhang L; Jun YS
    Environ Sci Technol; 2015 Aug; 49(16):10217-25. PubMed ID: 26171995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plagioclase dissolution during CO₂-SO₂ cosequestration: effects of sulfate.
    Min Y; Kubicki JD; Jun YS
    Environ Sci Technol; 2015 Feb; 49(3):1946-54. PubMed ID: 25549263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of CO2-water-rock interactions on geologic CO2 sequestration under geological conditions of China.
    Wang T; Wang H; Zhang F; Xu T
    Mar Pollut Bull; 2013 Nov; 76(1-2):307-14. PubMed ID: 24035426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2011 Jul; 45(14):6175-80. PubMed ID: 21696218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Sell K; Enzmann F; Kersten M; Spangenberg E
    Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO
    Park T; Yoon S; Jung J; Kwon TH
    Environ Sci Technol; 2020 Dec; 54(23):15355-15365. PubMed ID: 33186009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Mineral Dissolution/Precipitation and CO
    Xu R; Li R; Ma J; He D; Jiang P
    Acc Chem Res; 2017 Sep; 50(9):2056-2066. PubMed ID: 28812872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.
    Yang Y; Min Y; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):150-8. PubMed ID: 22978468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ spectrophotometric determination of pH under geologic CO2 sequestration conditions: method development and application.
    Shao H; Thompson CJ; Qafoku O; Cantrell KJ
    Environ Sci Technol; 2013 Jan; 47(1):63-70. PubMed ID: 22708540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.