These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20586480)

  • 1. Direct low-temperature nanographene CVD synthesis over a dielectric insulator.
    Rümmeli MH; Bachmatiuk A; Scott A; Börrnert F; Warner JH; Hoffman V; Lin JH; Cuniberti G; Büchner B
    ACS Nano; 2010 Jul; 4(7):4206-10. PubMed ID: 20586480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of carbon nanostructures using a Pd-based catalyst.
    Segura RA; Hevia S; Häberle P
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10036-46. PubMed ID: 22413342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of the Raman spectra of graphene and graphene multilayers.
    Calizo I; Balandin AA; Bao W; Miao F; Lau CN
    Nano Lett; 2007 Sep; 7(9):2645-9. PubMed ID: 17718584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct chemical vapor deposition of graphene on dielectric surfaces.
    Ismach A; Druzgalski C; Penwell S; Schwartzberg A; Zheng M; Javey A; Bokor J; Zhang Y
    Nano Lett; 2010 May; 10(5):1542-8. PubMed ID: 20361753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst.
    Ouyang Y; Chen L; Liu QX; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of SiC nanowires with in-situ deposition of carbon coating.
    Yang W; Araki H; Tang C; Hu Q; Suzuki H; Noda T
    J Nanosci Nanotechnol; 2005 Feb; 5(2):255-8. PubMed ID: 15853144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene epitaxy by chemical vapor deposition on SiC.
    Strupinski W; Grodecki K; Wysmolek A; Stepniewski R; Szkopek T; Gaskell PE; Grüneis A; Haberer D; Bozek R; Krupka J; Baranowski JM
    Nano Lett; 2011 Apr; 11(4):1786-91. PubMed ID: 21438581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.
    Vijayaraghavan RK; Gaman C; Jose B; McCoy AP; Cafolla T; McNally PJ; Daniels S
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4878-86. PubMed ID: 26808203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of thermal treatment on carbon-doped silicon oxide low dielectric constant materials.
    Xie JL; Lin JY; Wang YH; Narayanan B; Wang MR; Kumar R
    J Nanosci Nanotechnol; 2005 Apr; 5(4):550-7. PubMed ID: 16004118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates.
    Du L; Yang L; Hu Z; Zhang J; Huang C; Sun L; Wang L; Wei D; Chen G; Lu W
    Nanotechnology; 2018 May; 29(21):215711. PubMed ID: 29513272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of carbon nanostructures--in-situ study of carbon deposition parameters.
    Mitri SP; Sotirchos SV
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2451-8. PubMed ID: 17663264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices.
    Aristov VY; Urbanik G; Kummer K; Vyalikh DV; Molodtsova OV; Preobrajenski AB; Zakharov AA; Hess C; Hänke T; Büchner B; Vobornik I; Fujii J; Panaccione G; Ossipyan YA; Knupfer M
    Nano Lett; 2010 Mar; 10(3):992-5. PubMed ID: 20141155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition.
    Hung WH; Hsu IK; Bushmaker A; Kumar R; Theiss J; Cronin SB
    Nano Lett; 2008 Oct; 8(10):3278-82. PubMed ID: 18771333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst.
    Bhaviripudi S; Jia X; Dresselhaus MS; Kong J
    Nano Lett; 2010 Oct; 10(10):4128-33. PubMed ID: 20812667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering.
    Reinhold-López K; Braeuer A; Popovska N; Leipertz A
    Opt Express; 2010 Aug; 18(17):18223-8. PubMed ID: 20721212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial bonding characteristics between graphene and dielectric substrates.
    Das S; Lahiri D; Agarwal A; Choi W
    Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High mobility, printable, and solution-processed graphene electronics.
    Wang S; Ang PK; Wang Z; Tang AL; Thong JT; Loh KP
    Nano Lett; 2010 Jan; 10(1):92-8. PubMed ID: 20025234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.
    Iyer GR; Wang J; Wells G; Guruvenket S; Payne S; Bradley M; Borondics F
    ACS Nano; 2014 Jun; 8(6):6353-62. PubMed ID: 24860924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.