These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20586480)
21. Direct Growth of Graphene on Insulator Using Liquid Precursor Via an Intermediate Nanostructured State Carbon Nanotube. Nayak PK Nanoscale Res Lett; 2019 Mar; 14(1):107. PubMed ID: 30903401 [TBL] [Abstract][Full Text] [Related]
22. Nanoscale imaging of freestanding nitrogen doped single layer graphene. Iyer GR; Wang J; Wells G; Bradley MP; Borondics F Nanoscale; 2015 Feb; 7(6):2289-94. PubMed ID: 25584935 [TBL] [Abstract][Full Text] [Related]
23. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Li X; Cai W; Colombo L; Ruoff RS Nano Lett; 2009 Dec; 9(12):4268-72. PubMed ID: 19711970 [TBL] [Abstract][Full Text] [Related]
24. Syntheses and characterization of Mg(OH)(2) and MgO nanostructures by ultrasonic method. Alavi MA; Morsali A Ultrason Sonochem; 2010 Feb; 17(2):441-6. PubMed ID: 19762266 [TBL] [Abstract][Full Text] [Related]
25. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations. Maruyama S; Murakami Y; Shibuta Y; Miyauchi Y; Chiashi S J Nanosci Nanotechnol; 2004 Apr; 4(4):360-7. PubMed ID: 15296225 [TBL] [Abstract][Full Text] [Related]
26. Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene. Liu WC; Lin HK; Chen YL; Lee CY; Chiu HT ACS Nano; 2010 Jul; 4(7):4149-57. PubMed ID: 20527809 [TBL] [Abstract][Full Text] [Related]
27. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. Khan A; Islam SM; Ahmed S; Kumar RR; Habib MR; Huang K; Hu M; Yu X; Yang D Adv Sci (Weinh); 2018 Nov; 5(11):1800050. PubMed ID: 30479910 [TBL] [Abstract][Full Text] [Related]
28. Can graphene be used as a substrate for Raman enhancement? Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694 [TBL] [Abstract][Full Text] [Related]
29. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. Qin Y; Jiang X; Cui Z J Phys Chem B; 2005 Nov; 109(46):21749-54. PubMed ID: 16853825 [TBL] [Abstract][Full Text] [Related]
30. Transfer-Free CVD Growth of High-Quality Wafer-Scale Graphene at 300 °C for Device Mass Fabrication. Qian F; Deng J; Dong Y; Xu C; Hu L; Fu G; Chang P; Xie Y; Sun J ACS Appl Mater Interfaces; 2022 Nov; 14(47):53174-53182. PubMed ID: 36383777 [TBL] [Abstract][Full Text] [Related]
31. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s. Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434 [TBL] [Abstract][Full Text] [Related]
32. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. Ishikawa FN; Chang HK; Ryu K; Chen PC; Badmaev A; Gomez De Arco L; Shen G; Zhou C ACS Nano; 2009 Jan; 3(1):73-9. PubMed ID: 19206251 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method. Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155 [TBL] [Abstract][Full Text] [Related]
34. Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition. Bachmatiuk A; Börrnert F; Grobosch M; Schäffel F; Wolff U; Scott A; Zaka M; Warner JH; Klingeler R; Knupfer M; Büchner B; Rümmeli MH ACS Nano; 2009 Dec; 3(12):4098-104. PubMed ID: 19908851 [TBL] [Abstract][Full Text] [Related]
35. Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO Pang J; Mendes RG; Wrobel PS; Wlodarski MD; Ta HQ; Zhao L; Giebeler L; Trzebicka B; Gemming T; Fu L; Liu Z; Eckert J; Bachmatiuk A; Rümmeli MH ACS Nano; 2017 Feb; 11(2):1946-1956. PubMed ID: 28117971 [TBL] [Abstract][Full Text] [Related]
36. Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene. Müller M; Bouša M; Hájková Z; Ledinský M; Fejfar A; Drogowska-Horná K; Kalbáč M; Frank AO Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213885 [TBL] [Abstract][Full Text] [Related]
37. Direct observation of the growth process of MgO nanoflowers by a simple chemical route. Fang XS; Ye CH; Zhang LD; Zhang JX; Zhao JW; Yan P Small; 2005 Apr; 1(4):422-8. PubMed ID: 17193467 [TBL] [Abstract][Full Text] [Related]
38. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition. Chiang HL; Wu TN; Ho YS; Zeng LX J Hazard Mater; 2014 Jul; 276():43-51. PubMed ID: 24858051 [TBL] [Abstract][Full Text] [Related]
39. Electro-physical properties of composites with nano-sized oxides. Lee SH; Choi Y J Nanosci Nanotechnol; 2013 Nov; 13(11):7610-4. PubMed ID: 24245301 [TBL] [Abstract][Full Text] [Related]
40. Electronic transport properties of individual chemically reduced graphene oxide sheets. Gómez-Navarro C; Weitz RT; Bittner AM; Scolari M; Mews A; Burghard M; Kern K Nano Lett; 2007 Nov; 7(11):3499-503. PubMed ID: 17944526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]