BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2058729)

  • 1. Defibrillation shocks increase myocardial pacing threshold: an intracellular microelectrode study.
    Li HG; Jones DL; Yee R; Klein GJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1973-9. PubMed ID: 2058729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane potential changes caused by shocks in guinea pig papillary muscle.
    Zhou X; Smith WM; Rollins DL; Ideker RE
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2536-46. PubMed ID: 8997315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High voltage shock induced cellular electrophysiological effects: transient refractoriness and bimodal changes in action potential duration.
    Li HG; Jones DL; Yee R; Klein GJ
    Pacing Clin Electrophysiol; 1995 Jun; 18(6):1225-35. PubMed ID: 7659576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphasic defibrillation waveforms reduce shock-induced response duration dispersion between low and high shock intensities.
    Tovar OH; Jones JL
    Circ Res; 1995 Aug; 77(2):430-8. PubMed ID: 7614727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period.
    Dillon SM
    Circ Res; 1991 Sep; 69(3):842-56. PubMed ID: 1873877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation among fibrillation, defibrillation, and cardiac pacing.
    Ideker RE; Zhou X; Knisley SB
    Pacing Clin Electrophysiol; 1995 Mar; 18(3 Pt 2):512-25. PubMed ID: 7777416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of postshock atrial pacing on atrial defibrillation outcome in the isolated sheep heart.
    Skanes AC; Gray RA; Zuur CL; Jalife J
    Circulation; 1998 Jul; 98(1):64-72. PubMed ID: 9665062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurements of membrane time constant during defibrillation strength shocks.
    Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR
    Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart.
    Dillon SM
    Circulation; 1992 May; 85(5):1865-78. PubMed ID: 1572042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts.
    Zhou X; Ideker RE; Blitchington TF; Smith WM; Knisley SB
    Circ Res; 1995 Sep; 77(3):593-602. PubMed ID: 7641329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrhythmogenic effects of catecholamines are decreased in heart failure induced by rapid pacing in dogs.
    Li HG; Jones DL; Yee R; Klein GJ
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1654-62. PubMed ID: 8238576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of electroporation in defibrillation.
    Al-Khadra A; Nikolski V; Efimov IR
    Circ Res; 2000 Oct; 87(9):797-804. PubMed ID: 11055984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of quinidine and verapamil on electrically induced automaticity in the ventricular myocardium of guinea pig.
    Grant AO; Katzung BG
    J Pharmacol Exp Ther; 1976 Feb; 196(2):407-19. PubMed ID: 1255485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks.
    DeBruin KA; Krassowska W
    Ann Biomed Eng; 1998; 26(4):584-96. PubMed ID: 9662151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane potentials during high voltage shocks in ischemic cardiac tissue.
    Holley LK; Knisley SB
    Pacing Clin Electrophysiol; 1997 Jan; 20(1 Pt 2):146-52. PubMed ID: 9121979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of catecholamines on the residual sodium channel dependent slow conduction in guinea pig ventricular muscles under normoxia and hypoxia.
    Hisatome I; Arita M
    Cardiovasc Res; 1995 Jan; 29(1):65-73. PubMed ID: 7895241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.