BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20587505)

  • 1. Paracelsus and formaldehyde 2010: the dose to the target organ makes the poison.
    Lehman-McKeeman L
    Toxicol Sci; 2010 Aug; 116(2):361-3. PubMed ID: 20587505
    [No Abstract]   [Full Text] [Related]  

  • 2. Formaldehyde-induced DNA adducts as biomarkers of in vitro human nasal epithelial cell exposure to formaldehyde.
    Zhong W; Que Hee SS
    Mutat Res; 2004 Sep; 563(1):13-24. PubMed ID: 15324745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of methods for measuring biological markers of formaldehyde exposure.
    Fennell TR
    Res Rep Health Eff Inst; 1994 Jun; (67):1-20; discussion 21-6. PubMed ID: 7917119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of N2-hydroxymethyl-dG adducts in the nasal epithelium and bone marrow of nonhuman primates following 13CD2-formaldehyde inhalation exposure.
    Moeller BC; Lu K; Doyle-Eisele M; McDonald J; Gigliotti A; Swenberg JA
    Chem Res Toxicol; 2011 Feb; 24(2):162-4. PubMed ID: 21222454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of formaldehyde on acellular-nuclear DNA].
    Yang L; Wang Y; Zhu H
    Wei Sheng Yan Jiu; 2013 Jan; 42(1):143-6. PubMed ID: 23596727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dosimetry of N2-hydroxymethyl-dG DNA adducts in rats exposed to formaldehyde.
    Lu K; Moeller B; Doyle-Eisele M; McDonald J; Swenberg JA
    Chem Res Toxicol; 2011 Feb; 24(2):159-61. PubMed ID: 21155545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of formaldehyde inhalation on the junctional proteins of nasal respiratory mucosa of rats.
    Arican RY; Sahin Z; Ustunel I; Sarikcioglu L; Ozdem S; Oguz N
    Exp Toxicol Pathol; 2009 Jul; 61(4):297-305. PubMed ID: 18996001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro.
    Neuss S; Holzmann K; Speit G
    Toxicol Lett; 2010 Oct; 198(2):289-95. PubMed ID: 20655997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure.
    Thomas RS; Allen BC; Nong A; Yang L; Bermudez E; Clewell HJ; Andersen ME
    Toxicol Sci; 2007 Jul; 98(1):240-8. PubMed ID: 17449896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of tumor-associated mutations in the nasal mucosa of rats exposed to varying doses of formaldehyde.
    Meng F; Bermudez E; McKinzie PB; Andersen ME; Clewell HJ; Parsons BL
    Regul Toxicol Pharmacol; 2010; 57(2-3):274-83. PubMed ID: 20347909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure of human nasal epithelial cells to formaldehyde does not lead to DNA damage in lymphocytes after co-cultivation.
    Neuss S; Moepps B; Speit G
    Mutagenesis; 2010 Jul; 25(4):359-64. PubMed ID: 20299426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis of F344 rat nasal epithelium suggests that the lack of carcinogenic response to glutaraldehyde is due to its greater toxicity compared to formaldehyde.
    Hester SD; Barry WT; Zou F; Wolf DC
    Toxicol Pathol; 2005; 33(4):415-24. PubMed ID: 16036858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model for the absorption and metabolism of formaldehyde vapour by humans.
    Franks SJ
    Toxicol Appl Pharmacol; 2005 Aug; 206(3):309-20. PubMed ID: 16039942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacodynamics of formaldehyde: applications of a model for the arrest of DNA replication by DNA-protein cross-links.
    Heck H; Casanova M
    Toxicol Appl Pharmacol; 1999 Oct; 160(1):86-100. PubMed ID: 10502505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity.
    Heck Hd; Casanova M
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):92-106. PubMed ID: 15450713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contributions of endogenous and exogenous formaldehyde to formation of deoxyguanosine monoadducts and DNA-protein crosslink adducts of DNA in rat nasal mucosa.
    Conolly RB; Campbell JL; Clewell HJ; Schroeter J; Kimbell JS; Gentry PR
    Toxicol Sci; 2023 Jan; 191(1):15-24. PubMed ID: 36409013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of DNA adduct levels in nasal mucosa, lymphocytes and bronchial mucosa of cigarette smokers and interaction with metabolic gene polymorphisms.
    Peluso M; Neri M; Margarino G; Mereu C; Munnia A; Ceppi M; Buratti M; Felletti R; Stea F; Quaglia R; Puntoni R; Taioli E; Garte S; Bonassi S
    Carcinogenesis; 2004 Dec; 25(12):2459-65. PubMed ID: 15319297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of DNA-protein crosslinks by dichloromethane in a V79 cell line transfected with the murine glutathione-S-transferase theta 1 gene.
    Hu Y; Kabler SL; Tennant AH; Townsend AJ; Kligerman AD
    Mutat Res; 2006 Sep; 607(2):231-9. PubMed ID: 16765633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links.
    Cheng G; Shi Y; Sturla SJ; Jalas JR; McIntee EJ; Villalta PW; Wang M; Hecht SS
    Chem Res Toxicol; 2003 Feb; 16(2):145-52. PubMed ID: 12588185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytogenetic analysis of nasal mucosa cells and lymphocytes from high-level long-term formaldehyde exposed workers and low-level short-term exposed waiters.
    Ye X; Yan W; Xie H; Zhao M; Ying C
    Mutat Res; 2005 Dec; 588(1):22-7. PubMed ID: 16257574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.