These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 20587620)
1. Transcriptome profiling and network analysis of genetically hypertensive mice identifies potential pharmacological targets of hypertension. Puig O; Wang IM; Cheng P; Zhou P; Roy S; Cully D; Peters M; Benita Y; Thompson J; Cai TQ Physiol Genomics; 2010 Sep; 42A(1):24-32. PubMed ID: 20587620 [TBL] [Abstract][Full Text] [Related]
2. Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Friese RS; Mahboubi P; Mahapatra NR; Mahata SK; Schork NJ; Schmid-Schönbein GW; O'Connor DT Am J Hypertens; 2005 May; 18(5 Pt 1):633-52. PubMed ID: 15882546 [TBL] [Abstract][Full Text] [Related]
3. Systemic evaluation of gene expression changes in major target organs induced by atorvastatin. Kato N; Liang YQ; Ochiai Y; Jesmin S Eur J Pharmacol; 2008 Apr; 584(2-3):376-89. PubMed ID: 18295756 [TBL] [Abstract][Full Text] [Related]
4. Characterization of hypertensive and hypotensive inbred strains of mice. Schlager G; Sides J Lab Anim Sci; 1997 Jun; 47(3):288-92. PubMed ID: 9241632 [TBL] [Abstract][Full Text] [Related]
5. Regulatory network analysis of hypertension and hypotension microarray data from mouse model. Zhu Y; Zhuo J; Li C; Wang Q; Liu X; Ye L Clin Exp Hypertens; 2018; 40(7):631-636. PubMed ID: 29400567 [TBL] [Abstract][Full Text] [Related]
6. Myocardial gene expression associated with genetic cardiac hypertrophy in the absence of hypertension. Dwyer JP; Ritchie ME; Smyth GK; Harrap SB; Delbridge L; Domenighetti AA; Di Nicolantonio R Hypertens Res; 2008 May; 31(5):941-55. PubMed ID: 18712050 [TBL] [Abstract][Full Text] [Related]
7. The angiotensin II receptor (Agtr1a): functional regulatory polymorphisms in a locus genetically linked to blood pressure variation in the mouse. Wong C; Mahapatra NR; Chitbangonsyn S; Mahboubi P; Mahata M; Mahata SK; O'Connor DT Physiol Genomics; 2003 Jun; 14(1):83-93. PubMed ID: 12697907 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array. Joe B; Letwin NE; Garrett MR; Dhindaw S; Frank B; Sultana R; Verratti K; Rapp JP; Lee NH Physiol Genomics; 2005 Nov; 23(3):318-26. PubMed ID: 16204469 [TBL] [Abstract][Full Text] [Related]
9. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy. Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional alterations in the left ventricle of three hypertensive rat models. Cerutti C; Kurdi M; Bricca G; Hodroj W; Paultre C; Randon J; Gustin MP Physiol Genomics; 2006 Nov; 27(3):295-308. PubMed ID: 16882881 [TBL] [Abstract][Full Text] [Related]
11. Global upregulation of gene expression associated with renal dysfunction in DOCA-salt-induced hypertensive rats occurs via signaling cascades involving epidermal growth factor receptor: a microarray analysis. Benter IF; Canatan H; Benboubetra M; Yousif MH; Akhtar S Vascul Pharmacol; 2009; 51(2-3):101-9. PubMed ID: 19410658 [TBL] [Abstract][Full Text] [Related]
12. A novel gene (Cmya3) induced in the heart by angiotensin II-dependent but not salt-dependent hypertension in mice. Duka A; Schwartz F; Duka I; Johns C; Melista E; Gavras I; Gavras H Am J Hypertens; 2006 Mar; 19(3):275-81. PubMed ID: 16500513 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of aorta from a short-term high-fat diet fed mouse reveals changes in the expression of vessel structure genes. Dejeans N; Auclair S; Chauvet S; Milenkovic D; Mazur A J Physiol Pharmacol; 2009 May; 60 Suppl 1():37-45. PubMed ID: 19609012 [TBL] [Abstract][Full Text] [Related]
14. Identification of hypertension-related genes through an integrated genomic-transcriptomic approach. Yagil C; Hubner N; Monti J; Schulz H; Sapojnikov M; Luft FC; Ganten D; Yagil Y Circ Res; 2005 Apr; 96(6):617-25. PubMed ID: 15731461 [TBL] [Abstract][Full Text] [Related]
15. Mouse strain-specific differences in vascular wall gene expression and their relationship to vascular disease. Tabibiazar R; Wagner RA; Spin JM; Ashley EA; Narasimhan B; Rubin EM; Efron B; Tsao PS; Tibshirani R; Quertermous T Arterioscler Thromb Vasc Biol; 2005 Feb; 25(2):302-8. PubMed ID: 15550693 [TBL] [Abstract][Full Text] [Related]
16. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes. Korostynski M; Kaminska-Chowaniec D; Piechota M; Przewlocki R BMC Genomics; 2006 Jun; 7():146. PubMed ID: 16772024 [TBL] [Abstract][Full Text] [Related]
17. Serial analysis of gene expression in mouse kidney following angiotensin II administration. Schwartz F; Duka A; Triantafyllidi E; Johns C; Duka I; Cui J; Gavras H Physiol Genomics; 2003 Dec; 16(1):90-8. PubMed ID: 14570981 [TBL] [Abstract][Full Text] [Related]
18. Diurnal profiling of neuroendocrine genes in murine heart, and shift in proopiomelanocortin gene expression with pressure-overload cardiac hypertrophy. Chalmers JA; Lin SY; Martino TA; Arab S; Liu P; Husain M; Sole MJ; Belsham DD J Mol Endocrinol; 2008 Sep; 41(3):117-24. PubMed ID: 18550896 [TBL] [Abstract][Full Text] [Related]
19. Renin activity and angiotensin I concentration in genetically selective inbred line of hypertensive mice. Uddin M; Harris-Nelson N Biochem Biophys Res Commun; 2004 Apr; 316(3):842-4. PubMed ID: 15033477 [TBL] [Abstract][Full Text] [Related]
20. The monocyte chemotactic protein-1 gene may contribute to hypertension in Dahl salt-sensitive rats. Yasui N; Kajimoto K; Sumiya T; Okuda T; Iwai N Hypertens Res; 2007 Feb; 30(2):185-93. PubMed ID: 17460389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]