These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20588337)

  • 1. Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles.
    Lee SM; Choi KC
    Opt Express; 2010 Jun; 18(12):12144-52. PubMed ID: 20588337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles.
    Lee SM; Choi KC; Kim DH; Jeon DY
    Opt Express; 2011 Jul; 19(14):13209-17. PubMed ID: 21747476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influence of Eu2+ content on the spectral characteristics of BaMgAl10O17 : Eu2+ phosphors].
    Chen Z; Xie H; Yan YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):657-9. PubMed ID: 17608168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon resonance interaction with Er3+-doped tellurite glass.
    Rivera VA; Osorio SP; Ledemi Y; Manzani D; Messaddeq Y; Nunes LA; Marega E
    Opt Express; 2010 Nov; 18(24):25321-8. PubMed ID: 21164880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance-dependent plasmonic enhancement via radiative transitions of europium complex.
    Lee SM; Choi KC
    Opt Lett; 2013 Apr; 38(8):1355-7. PubMed ID: 23595483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spectral properties and energy transfer of Ce3+ and Eu2+ ions co-doped Ba2SiO4 : xCe3+, 0.02Eu2+ green phosphor for white LEDs].
    Liu HL; He DW; Shen F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1790-3. PubMed ID: 17205721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eu2+-activated silicon-oxynitride Ca3Si2O4N2: a green-emitting phosphor for white LEDs.
    Chiu YC; Huang CH; Lee TJ; Liu WR; Yeh YT; Jang SM; Liu RS
    Opt Express; 2011 May; 19 Suppl 3():A331-9. PubMed ID: 21643375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles.
    Fang X; Song H; Xie L; Liu Q; Zhang H; Bai X; Dong B; Wang Y; Han W
    J Chem Phys; 2009 Aug; 131(5):054506. PubMed ID: 19673573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced fluorescence and heat dissipation of calcium titanate red phosphor based on silver coating.
    Chen Z; Qin X; Zhang Q; Li Y; Wang H
    J Colloid Interface Sci; 2015 Dec; 459():44-52. PubMed ID: 26263494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes.
    Huang CH; Chen TM
    Opt Express; 2010 Mar; 18(5):5089-99. PubMed ID: 20389521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses.
    Guo H; Wang X; Chen J; Li F
    Opt Express; 2010 Aug; 18(18):18900-5. PubMed ID: 20940783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Plasmon Enhancement of Eu
    Kuzman S; Periša J; Đorđević V; Zeković I; Vukoje I; Antić Ž; Dramićanin MD
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates.
    Itoh T; Biju V; Ishikawa M; Kikkawa Y; Hashimoto K; Ikehata A; Ozaki Y
    J Chem Phys; 2006 Apr; 124(13):134708. PubMed ID: 16613469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications.
    Kameyama T; Ohno Y; Kurimoto T; Okazaki K; Uematsu T; Kuwabata S; Torimoto T
    Phys Chem Chem Phys; 2010 Feb; 12(8):1804-11. PubMed ID: 20145845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells.
    Huang CW; Tseng HY; Chen CY; Liao CH; Hsieh C; Chen KY; Lin HY; Chen HS; Jung YL; Kiang YW; Yang CC
    Nanotechnology; 2011 Nov; 22(47):475201. PubMed ID: 22049151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode.
    Chen SH; Jhong JY
    Opt Express; 2011 Aug; 19(18):16843-50. PubMed ID: 21935045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.