These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20588366)

  • 1. Fourier domain Pump-Probe Optical Coherence Tomography imaging of melanin.
    Jacob D; Shelton RL; Applegate BE
    Opt Express; 2010 Jun; 18(12):12399-410. PubMed ID: 20588366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo pump-probe optical coherence tomography imaging in Xenopus laevis.
    Carrasco-Zevallos O; Shelton RL; Kim W; Pearson J; Applegate BE
    J Biophotonics; 2015 Jan; 8(1-2):25-35. PubMed ID: 24282110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.
    Wylegała E; Teper S; Nowińska AK; Milka M; Dobrowolski D
    J Cataract Refract Surg; 2009 Aug; 35(8):1410-4. PubMed ID: 19631129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.
    Chansangpetch S; Nguyen A; Mora M; Badr M; He M; Porco TC; Lin SC
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1554-1561. PubMed ID: 29625479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography.
    Choi WJ; Pi LQ; Min G; Lee WS; Lee BH
    J Biomed Opt; 2012 Mar; 17(3):036010. PubMed ID: 22502568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography.
    Sarunic MV; Asrani S; Izatt JA
    Arch Ophthalmol; 2008 Apr; 126(4):537-42. PubMed ID: 18413525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravascular optical coherence tomography imaging at 3200 frames per second.
    Wang T; Wieser W; Springeling G; Beurskens R; Lancee CT; Pfeiffer T; van der Steen AF; Huber R; van Soest G
    Opt Lett; 2013 May; 38(10):1715-7. PubMed ID: 23938921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-domain optical coherence tomography with digital holographic microscopy.
    Massatsch P; Charrière F; Cuche E; Marquet P; Depeursinge CD
    Appl Opt; 2005 Apr; 44(10):1806-12. PubMed ID: 15813516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier Domain Optical Coherence Tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT.
    Stehouwer M; Verbraak FD; de Vries H; Kok PH; van Leeuwen TG
    Eye (Lond); 2010 Jun; 24(6):980-4. PubMed ID: 19911024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo molecular contrast OCT imaging of methylene blue.
    Kim W; Applegate BE
    Opt Lett; 2015 Apr; 40(7):1426-9. PubMed ID: 25831349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s.
    Choi D; Hiro-Oka H; Furukawa H; Yoshimura R; Nakanishi M; Shimizu K; Ohbayashi K
    Opt Lett; 2008 Jun; 33(12):1318-20. PubMed ID: 18552944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye.
    Jeong K; Peng L; Turek JJ; Melloch MR; Nolte DD
    Appl Opt; 2005 Apr; 44(10):1798-805. PubMed ID: 15813515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer.
    Hu Z; Rollins AM
    Opt Lett; 2007 Dec; 32(24):3525-7. PubMed ID: 18087530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation.
    Yasuno Y; Endo T; Makita S; Aoki G; Itoh M; Yatagai T
    J Biomed Opt; 2006; 11(1):014014. PubMed ID: 16526891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.
    Huber R; Adler DC; Srinivasan VJ; Fujimoto JG
    Opt Lett; 2007 Jul; 32(14):2049-51. PubMed ID: 17632639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doppler optical coherence tomography for interventional cardiovascular guidance: in vivo feasibility and forward-viewing probe flow phantom demonstration.
    Munce NR; Wright GA; Mariampillai A; Standish BA; Leung MK; Tan L; Lee K; Courtney BK; Teitelbaum AA; Strauss BH; Vitkin IA; Yang VX
    J Biomed Opt; 2010; 15(1):011103. PubMed ID: 20210429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J; Sugden K; Tomlins PH
    J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S; Bradu A; Podoleanu AG
    J Biomed Opt; 2010; 15(3):030511. PubMed ID: 20614994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-gated Fourier-domain optical coherence tomography.
    Muller MS; Webster PJ; Fraser JM
    Opt Lett; 2007 Nov; 32(22):3336-8. PubMed ID: 18026299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed visualization of the anterior segment using fourier-domain optical coherence tomography.
    Asrani S; Sarunic M; Santiago C; Izatt J
    Arch Ophthalmol; 2008 Jun; 126(6):765-71. PubMed ID: 18541838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.