BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20588433)

  • 21. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs.
    Fan K; Hwang HY; Liu M; Strikwerda AC; Sternbach A; Zhang J; Zhao X; Zhang X; Nelson KA; Averitt RD
    Phys Rev Lett; 2013 May; 110(21):217404. PubMed ID: 23745933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study.
    Wallauer J; Bitzer A; Waselikowski S; Walther M
    Opt Express; 2011 Aug; 19(18):17283-92. PubMed ID: 21935092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmission properties of terahertz pulses through subwavelength double split-ring resonators.
    Azad AK; Dai J; Zhang W
    Opt Lett; 2006 Mar; 31(5):634-6. PubMed ID: 16570422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of swelling of a photoresist on electromagnetic resonance of terahertz metamaterials.
    Chiang WF; Hsieh YT; Wang SH; Miao HY; Liu JH; Huang CY
    Opt Lett; 2016 Jun; 41(12):2879-82. PubMed ID: 27304312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Second Harmonic Light Manipulation with Vertical Split Ring Resonators.
    Tsai WY; Chung TL; Hsiao HH; Chen JW; Lin RJ; Wu PC; Sun G; Wang CM; Misawa H; Tsai DP
    Adv Mater; 2019 Feb; 31(7):e1806479. PubMed ID: 30549339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of metal permittivity on resonant properties of terahertz metamaterials.
    Singh R; Azad AK; O'Hara JF; Taylor AJ; Zhang W
    Opt Lett; 2008 Jul; 33(13):1506-8. PubMed ID: 18594680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave and terahertz wave sensing with metamaterials.
    Tao H; Kadlec EA; Strikwerda AC; Fan K; Padilla WJ; Averitt RD; Shaner EA; Zhang X
    Opt Express; 2011 Oct; 19(22):21620-6. PubMed ID: 22109011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing.
    Chen J; Fan W; Zhang T; Tang C; Chen X; Wu J; Li D; Yu Y
    Opt Express; 2017 Feb; 25(4):3675-3681. PubMed ID: 28241580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.
    Yue W; Wang Z; Whittaker J; Schedin F; Wu Z; Han J
    Nanotechnology; 2016 Feb; 27(5):055303. PubMed ID: 26751676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.
    Tang W; Wang L; Chen X; Liu C; Yu A; Lu W
    Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A broadband planar terahertz metamaterial with nested structure.
    Chowdhury DR; Singh R; Reiten M; Chen HT; Taylor AJ; O'Hara JF; Azad AK
    Opt Express; 2011 Aug; 19(17):15817-23. PubMed ID: 21934944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching.
    Meng K; Park SJ; Burnett AD; Gill T; Wood CD; Rosamond M; Li LH; Chen L; Bacon DR; Freeman JR; Dean P; Ahn YH; Linfield EH; Davies AG; Cunningham JE
    Opt Express; 2019 Aug; 27(16):23164-23172. PubMed ID: 31510599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A standing-wave interpretation of plasmon resonance excitation in split-ring resonators.
    Chen WY; Lin CH
    Opt Express; 2010 Jun; 18(13):14280-92. PubMed ID: 20588563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel sensors based on the symmetry properties of split ring resonators (SRRs).
    Naqui J; Durán-Sindreu M; Martín F
    Sensors (Basel); 2011; 11(8):7545-53. PubMed ID: 22164031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rendering dark modes bright by using asymmetric split ring resonators.
    Jeyaram Y; Verellen N; Zheng X; Silhanek AV; Hojeij M; Terhalle B; Ekinci Y; Valev VK; Vandenbosch GA; Moshchalkov VV
    Opt Express; 2013 Jul; 21(13):15464-74. PubMed ID: 23842334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A close-ring pair terahertz metamaterial resonating at normal incidence.
    Gu J; Han J; Lu X; Singh R; Tian Z; Xing Q; Zhang W
    Opt Express; 2009 Oct; 17(22):20307-12. PubMed ID: 19997257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resonance modes in stereometamaterial of square split ring resonators connected by sharing the gap.
    Wang SL; Xiao JJ; Zhang Q; Zhang XM
    Opt Express; 2014 Oct; 22(20):24358-66. PubMed ID: 25322011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonance properties of thick plasmonic split ring resonators for sensing applications.
    Giorgis V; Zilio P; Ruffato G; Massari M; Zacco G; Romanato F
    Opt Express; 2014 Nov; 22(22):26476-86. PubMed ID: 25401799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric split ring resonators for optical sensing of organic materials.
    Lahiri B; Khokhar AZ; De La Rue RM; McMeekin SG; Johnson NP
    Opt Express; 2009 Jan; 17(2):1107-15. PubMed ID: 19158928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials.
    Wu X; Quan B; Pan X; Xu X; Lu X; Xia X; Li J; Gu C; Wang L
    Appl Opt; 2013 Jul; 52(20):4877-83. PubMed ID: 23852202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.