These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20588433)

  • 41. Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors.
    Islam M; Rao SJM; Kumar G; Pal BP; Roy Chowdhury D
    Sci Rep; 2017 Aug; 7(1):7355. PubMed ID: 28779176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances.
    Al-Naib I; Hebestreit E; Rockstuhl C; Lederer F; Christodoulides D; Ozaki T; Morandotti R
    Phys Rev Lett; 2014 May; 112(18):183903. PubMed ID: 24856698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials.
    Hor YL; Szabó Z; Lim HC; Federici JF; Li EP
    Appl Opt; 2010 Mar; 49(8):1179-84. PubMed ID: 20220872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials.
    Chen J; Mao P; Xu R; Tang C; Liu Y; Wang Q; Zhang L
    Opt Express; 2015 Jun; 23(12):16238-45. PubMed ID: 26193596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensing viruses using terahertz nano-gap metamaterials.
    Park SJ; Cha SH; Shin GA; Ahn YH
    Biomed Opt Express; 2017 Aug; 8(8):3551-3558. PubMed ID: 28856034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube.
    Woo JH; Choi E; Kang B; Kim ES; Kim J; Lee YU; Hong TY; Kim JH; Lee I; Lee YH; Wu JW
    Opt Express; 2012 Jul; 20(14):15440-51. PubMed ID: 22772240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-gap individual and coupled split-ring resonator structures.
    Penciu RS; Aydin K; Kafesaki M; Koschny T; Ozbay E; Economou EN; Soukoulis CM
    Opt Express; 2008 Oct; 16(22):18131-44. PubMed ID: 18958091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly tunable optical activity in planar achiral terahertz metamaterials.
    Singh R; Plum E; Zhang W; Zheludev NI
    Opt Express; 2010 Jun; 18(13):13425-30. PubMed ID: 20588473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays.
    Sersic I; Frimmer M; Verhagen E; Koenderink AF
    Phys Rev Lett; 2009 Nov; 103(21):213902. PubMed ID: 20366039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain.
    Wang S; Wang S; Li Q; Zhao X; Zhu J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-field optical experiments on low-symmetry split-ring-resonator arrays.
    Diessel D; Decker M; Linden S; Wegener M
    Opt Lett; 2010 Nov; 35(21):3661-3. PubMed ID: 21042383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.
    Chen M; Singh L; Xu N; Singh R; Zhang W; Xie L
    Opt Express; 2017 Jun; 25(13):14089-14097. PubMed ID: 28788994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates.
    Singh R; Azad AK; Jia QX; Taylor AJ; Chen HT
    Opt Lett; 2011 Apr; 36(7):1230-2. PubMed ID: 21479039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials.
    Hu F; Fan Y; Zhang X; Jiang W; Chen Y; Li P; Yin X; Zhang W
    Opt Lett; 2018 Jan; 43(1):17-20. PubMed ID: 29328226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Terahertz Fano resonances induced by combining metamaterial modes of the same symmetry.
    Xu R; Zhang Z; Wieck AD; Jukam N
    Opt Express; 2020 Feb; 28(3):3932-3941. PubMed ID: 32122053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective enhanced resonances of two asymmetric terahertz nano resonators.
    Bahk YM; Choi JW; Kyoung J; Park HR; Ahn KJ; Kim DS
    Opt Express; 2012 Nov; 20(23):25644-53. PubMed ID: 23187383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Terahertz metasurface with multiple BICs/QBICs based on a split ring resonator.
    Zhang X; Shi W; Gu J; Cong L; Chen X; Wang K; Xu Q; Han J; Zhang W
    Opt Express; 2022 Aug; 30(16):29088-29098. PubMed ID: 36299092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Near-field asymmetries in plasmonic resonators.
    Aksyuk V; Lahiri B; Holland G; Centrone A
    Nanoscale; 2015 Feb; 7(8):3634-44. PubMed ID: 25636125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence.
    Ding P; Liang EJ; Zhang L; Zhou Q; Yuan YX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016604. PubMed ID: 19257157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complementary planar terahertz metamaterials.
    Chen HT; O'Hara JF; Taylor AJ; Averitt RD; Highstrete C; Lee M; Padilla WJ
    Opt Express; 2007 Feb; 15(3):1084-95. PubMed ID: 19532336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.