These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20588433)

  • 61. Monopole resonators in planar plasmonic metamaterials.
    Lee JW; Yang JK; Sohn IB; Yoo HK; Kang C; Kee CS
    Opt Express; 2014 Jul; 22(15):18433-9. PubMed ID: 25089462
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Magnetic response of metamaterials at 100 terahertz.
    Linden S; Enkrich C; Wegener M; Zhou J; Koschny T; Soukoulis CM
    Science; 2004 Nov; 306(5700):1351-3. PubMed ID: 15550664
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electric split-ring metamaterial based microfluidic chip with multi-resonances for microparticle trapping and chemical sensing applications.
    Xu X; Zheng D; Lin YS
    J Colloid Interface Sci; 2023 Jul; 642():462-469. PubMed ID: 37023517
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tailoring magnetic dipole emission with plasmonic split-ring resonators.
    Hein SM; Giessen H
    Phys Rev Lett; 2013 Jul; 111(2):026803. PubMed ID: 23889429
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High performance metamaterials-high electron mobility transistors integrated terahertz modulator.
    Zhou Z; Wang S; Yu Y; Chen Y; Feng L
    Opt Express; 2017 Jul; 25(15):17832-17840. PubMed ID: 28789274
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Magnetic response of split ring resonators (SRRs) at visible frequencies.
    Lahiri B; McMeekin SG; Khokhar AZ; De La Rue RM; Johnson NP
    Opt Express; 2010 Feb; 18(3):3210-8. PubMed ID: 20174160
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range.
    Tuniz A; Lwin R; Argyros A; Fleming SC; Pogson EM; Constable E; Lewis RA; Kuhlmey BT
    Opt Express; 2011 Aug; 19(17):16480-90. PubMed ID: 21935012
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reconfigurable terahertz metamaterials.
    Tao H; Strikwerda AC; Fan K; Padilla WJ; Zhang X; Averitt RD
    Phys Rev Lett; 2009 Oct; 103(14):147401. PubMed ID: 19905602
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators.
    Seliuta D; Šlekas G; Vaitkūnas A; Kancleris Ž; Valušis G
    Opt Express; 2017 Oct; 25(21):25113-25124. PubMed ID: 29041183
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators.
    Wang J; Qu S; Xu Z; Ma H; Xia S; Yang Y; Wu X; Wang Q; Chen C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036601. PubMed ID: 20365890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polarization-dependent electromagnetic responses in an A-shape metasurface.
    Zhang N; Xu Q; Li S; Ouyang C; Zhang X; Li Y; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2017 Aug; 25(17):20689-20697. PubMed ID: 29041747
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators.
    Fan Y; Wei Z; Zhang Z; Li H
    Opt Lett; 2013 Dec; 38(24):5410-3. PubMed ID: 24343004
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Double-T metamaterial for parallel and normal transverse electric incident waves.
    Ourir A; Abdeddaim R; de Rosny J
    Opt Lett; 2011 May; 36(9):1527-9. PubMed ID: 21540916
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multi-Channel Capacitive Sensor Arrays.
    Wang B; Long J; Teo KH
    Sensors (Basel); 2016 Jan; 16(2):150. PubMed ID: 26821023
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interplay of mutual electric and magnetic couplings between three-dimensional split-ring resonators.
    Chen YH; Chen CC; Ishikawa A; Shiao MH; Lin YS; Hsiao CN; Chiang HP; Tanaka T
    Opt Express; 2017 Feb; 25(3):2909-2917. PubMed ID: 29519007
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Second harmonic generation based on strong field enhancement in nanostructured THz materials.
    Merbold H; Bitzer A; Feurer T
    Opt Express; 2011 Apr; 19(8):7262-73. PubMed ID: 21503037
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance.
    Moritake Y; Tanaka T
    Sci Rep; 2017 Jul; 7(1):6726. PubMed ID: 28751761
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Frequency tunable near-infrared metamaterials based on VO2 phase transition.
    Dicken MJ; Aydin K; Pryce IM; Sweatlock LA; Boyd EM; Walavalkar S; Ma J; Atwater HA
    Opt Express; 2009 Sep; 17(20):18330-9. PubMed ID: 19907624
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.
    Li G; Li Q; Yang L; Wu L
    Opt Lett; 2016 Jul; 41(13):2911-4. PubMed ID: 27367063
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Magnetic response of split-ring resonators in the far-infrared frequency regime.
    Katsarakis N; Konstantinidis G; Kostopoulos A; Penciu RS; Gundogdu TF; Kafesaki M; Economou EN; Koschny T; Soukoulis CM
    Opt Lett; 2005 Jun; 30(11):1348-50. PubMed ID: 15981529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.