These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20588442)

  • 41. Controllable ablative machining of Al/Ti and Ti/Al nano-layers on a Si substrate by single-pulse femtosecond laser irradiation.
    Gaković B; Kudryashov SI; Danilov PA; Milovanović D; Panjan P; Bezhanov SG; Uryupin SA; Ionin AA
    Appl Opt; 2021 Nov; 60(31):H12-H19. PubMed ID: 34807148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High aspect ratio diamond nanosecond laser machining.
    Golota NC; Preiss D; Fredin ZP; Patil P; Banks DP; Bahri S; Griffin RG; Gershenfeld N
    Appl Phys A Mater Sci Process; 2023; 129(7):490. PubMed ID: 37333570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diamond optical vortex generator processed by ultraviolet femtosecond laser.
    Gao S; Li ZZ; Hu ZY; Yu F; Chen QD; Tian ZN; Sun HB
    Opt Lett; 2020 May; 45(9):2684-2687. PubMed ID: 32356847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extreme Sub-Wavelength Structure Formation from Mid-IR Femtosecond Laser Interaction with Silicon.
    Werner K; Chowdhury E
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatio-temporal modification of femtosecond focal spot under tight focusing condition.
    Jeong TM; Weber S; Le Garrec B; Margarone D; Mocek T; Korn G
    Opt Express; 2015 May; 23(9):11641-56. PubMed ID: 25969256
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses.
    Kudryashov S; Danilov P; Kuzmin E; Smirnov N; Gorevoy A; Vins V; Pomazkin D; Paholchuk P; Muratov A; Kirichenko A; Rodionov N; Vasil'ev E
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bulk laser-induced damage threshold of titanium-doped sapphire crystals.
    Bussière B; Utéza O; Sanner N; Sentis M; Riboulet G; Vigroux L; Commandré M; Wagner F; Natoli JY; Chambaret JP
    Appl Opt; 2012 Nov; 51(32):7826-33. PubMed ID: 23142896
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy.
    Rajesh S; Bellouard Y
    Opt Express; 2010 Sep; 18(20):21490-7. PubMed ID: 20941045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.
    Hrubiak R; Sinogeikin S; Rod E; Shen G
    Rev Sci Instrum; 2015 Jul; 86(7):072202. PubMed ID: 26233342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Si-Cr Nano-Alloys Fabricated by Direct Femtosecond Laser Writing.
    Maksimovic J; Mu H; Han M; Smith D; Katkus T; Anand V; Nishijima Y; Ng SH; Juodkazis S
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminium alloys.
    Cravetchi IV; Taschuk MT; Tsui YY; Fedosejevs R
    Anal Bioanal Chem; 2006 May; 385(2):287-94. PubMed ID: 16437203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation.
    Vázquez RM; Eaton SM; Ramponi R; Cerullo G; Osellame R
    Opt Express; 2011 Jun; 19(12):11597-604. PubMed ID: 21716392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electric-induced oxide breakdown of a charge-coupled device under femtosecond laser irradiation.
    Gao L; Zhu Z; Shao Z; Cheng X; Chang S
    Appl Opt; 2013 Nov; 52(31):7524-9. PubMed ID: 24216654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining.
    Mitra S; Chanal M; Clady R; Mouskeftaras A; Grojo D
    Appl Opt; 2015 Aug; 54(24):7358-65. PubMed ID: 26368773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delocalization of femtosecond radiation in silicon.
    Kononenko VV; Konov VV; Dianov EM
    Opt Lett; 2012 Aug; 37(16):3369-71. PubMed ID: 23381260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses.
    König K; Riemann I; Fritzsche W
    Opt Lett; 2001 Jun; 26(11):819-21. PubMed ID: 18040461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Colloidal particle lens arrays-assisted nano-patterning by harmonics of a femtosecond laser.
    Bityurin N; Afanasiev A; Bredikhin V; Alexandrov A; Agareva N; Pikulin A; Ilyakov I; Shishkin B; Akhmedzhanov R
    Opt Express; 2013 Sep; 21(18):21485-90. PubMed ID: 24104023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips.
    Tafel A; Meier S; Ristein J; Hommelhoff P
    Phys Rev Lett; 2019 Oct; 123(14):146802. PubMed ID: 31702221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression.
    Tokita S; Hashida M; Inoue S; Nishoji T; Otani K; Sakabe S
    Phys Rev Lett; 2010 Nov; 105(21):215004. PubMed ID: 21231312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses.
    Torres-Peiró S; González-Ausejo J; Mendoza-Yero O; Mínguez-Vega G; Andrés P; Lancis J
    Opt Express; 2013 Dec; 21(26):31830-6. PubMed ID: 24514778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.