These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20588447)

  • 1. Flat and low dispersion in highly nonlinear slot waveguides.
    Zhang L; Yue Y; Xiao-Li Y; Wang J; Beausoleil RG; Willner AE
    Opt Express; 2010 Jun; 18(12):13187-93. PubMed ID: 20588447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strip/slot hybrid arsenic tri-sulfide waveguide with ultra-flat and low dispersion profile over an ultra-wide bandwidth.
    Jafari Z; Emami F
    Opt Lett; 2013 Aug; 38(16):3082-5. PubMed ID: 24104654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flattened dispersion in silicon slot waveguides.
    Zhang L; Yue Y; Beausoleil RG; Willner AE
    Opt Express; 2010 Sep; 18(19):20529-34. PubMed ID: 20940946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides.
    Zhu M; Liu H; Li X; Huang N; Sun Q; Wen J; Wang Z
    Opt Express; 2012 Jul; 20(14):15899-907. PubMed ID: 22772280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.
    Liu Y; Yan J; Han G
    Appl Opt; 2014 Sep; 53(27):6302-6. PubMed ID: 25322111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots.
    Yue Y; Zhang L; Wang J; Beausoleil RG; Willner AE
    Opt Express; 2010 Oct; 18(21):22061-6. PubMed ID: 20941107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion.
    Liu Q; Gao S; Li Z; Xie Y; He S
    Appl Opt; 2011 Mar; 50(9):1260-5. PubMed ID: 21460997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides.
    Ding R; Baehr-Jones T; Liu Y; Bojko R; Witzens J; Huang S; Luo J; Benight S; Sullivan P; Fedeli JM; Fournier M; Dalton L; Jen A; Hochberg M
    Opt Express; 2010 Jul; 18(15):15618-23. PubMed ID: 20720943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction.
    Guo W; Kou JL; Xu F; Lu YQ
    Opt Express; 2011 Aug; 19(16):15229-35. PubMed ID: 21934886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss strip-loaded slot waveguides in silicon-on-insulator.
    Ding R; Baehr-Jones T; Kim WJ; Xiong X; Bojko R; Fedeli JM; Fournier M; Hochberg M
    Opt Express; 2010 Nov; 18(24):25061-7. PubMed ID: 21164851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides.
    An L; Liu H; Sun Q; Huang N; Wang Z
    Appl Opt; 2014 Aug; 53(22):4886-93. PubMed ID: 25090318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse pillar chalcogenide glass waveguides with ultraflat and low dispersion profile over an ultrawide bandwidth.
    Shi Y; Xu P; Shen X; Dai S; Nie Q
    Appl Opt; 2016 Feb; 55(5):1017-21. PubMed ID: 26906369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercontinuum generation in strip/slot hybrid waveguide with flat and low dispersion.
    Zhang Y; Liu H; Sun Q; Huang N; Wang Z
    Appl Opt; 2015 May; 54(15):4850-6. PubMed ID: 26192523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly dispersive slot waveguides.
    Zhang L; Yue Y; Xiao-Li Y; Beausoleil RG; Willner AE
    Opt Express; 2009 Apr; 17(9):7095-101. PubMed ID: 19399085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of terabit-scale data transmission in silicon vertical slot waveguides.
    Gui C; Li C; Yang Q; Wang J
    Opt Express; 2015 Apr; 23(8):9736-45. PubMed ID: 25969012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband and highly efficient quadratic interactions in double-slot lithium niobate waveguides through phase matching.
    Kou JL; Wang Q; Yu ZY; Xu F; Lu YQ
    Opt Lett; 2011 Jul; 36(13):2533-5. PubMed ID: 21725470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal geometry of nonlinear silicon slot waveguides accounting for the effect of waveguide losses.
    Ong JR; Chen VH
    Opt Express; 2015 Dec; 23(26):33622-33. PubMed ID: 26832026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries.
    Vallaitis T; Bogatscher S; Alloatti L; Dumon P; Baets R; Scimeca ML; Biaggio I; Diederich F; Koos C; Freude W; Leuthold J
    Opt Express; 2009 Sep; 17(20):17357-68. PubMed ID: 19907521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides.
    Monat C; Spurny M; Grillet C; O'Faolain L; Krauss TF; Eggleton BJ; Bulla D; Madden S; Luther-Davies B
    Opt Lett; 2011 Aug; 36(15):2818-20. PubMed ID: 21808323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a polymer-filled silicon nitride strip/slot asymmetric hybrid waveguide for realizing both flat dispersion and athermal operation.
    Bian D; Chen S; Lei X; Qin G; Chen Z
    Appl Opt; 2016 Jun; 55(18):4827-32. PubMed ID: 27409106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.