These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20588456)

  • 41. Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering.
    Hernández R; Sacristán J; Nogales A; Ezquerra TA; Mijangos C
    Langmuir; 2009 Nov; 25(22):13212-8. PubMed ID: 19769342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.
    Takahashi Y; Suzuki A; Zettsu N; Oroguchi T; Takayama Y; Sekiguchi Y; Kobayashi A; Yamamoto M; Nakasako M
    Nano Lett; 2013; 13(12):6028-32. PubMed ID: 24274169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells.
    Zhang Q; Rajan SS; Tyner KM; Casey BJ; Dugard CK; Jones Y; Paredes AM; Clingman CS; Howard PC; Goering PL
    J Biomed Mater Res B Appl Biomater; 2016 Jul; 104(5):1032-42. PubMed ID: 26013845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS).
    Yu C; Koh S; Leisch JE; Toney MF; Strasser P
    Faraday Discuss; 2008; 140():283-96; discussion 297-317. PubMed ID: 19213323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging.
    Amstad E; Zurcher S; Mashaghi A; Wong JY; Textor M; Reimhult E
    Small; 2009 Jun; 5(11):1334-42. PubMed ID: 19242944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular X-ray computed tomography of myelin in a rat brain.
    Jensen TH; Bech M; Bunk O; Menzel A; Bouchet A; Le Duc G; Feidenhans'l R; Pfeiffer F
    Neuroimage; 2011 Jul; 57(1):124-129. PubMed ID: 21514390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T
    Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D
    Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction.
    Kimura T; Joti Y; Shibuya A; Song C; Kim S; Tono K; Yabashi M; Tamakoshi M; Moriya T; Oshima T; Ishikawa T; Bessho Y; Nishino Y
    Nat Commun; 2014; 5():3052. PubMed ID: 24394916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI.
    Haribabu V; Farook AS; Goswami N; Murugesan R; Girigoswami A
    J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):817-24. PubMed ID: 26460478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents.
    Rand D; Derdak Z; Carlson R; Wands JR; Rose-Petruck C
    Sci Rep; 2015 Oct; 5():15673. PubMed ID: 26511147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.
    Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S
    Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal size and properties of superparamagnetic iron oxide (SPIO) particles.
    Sjögren CE; Johansson C; Naevestad A; Sontum PC; Briley-Saebø K; Fahlvik AK
    Magn Reson Imaging; 1997; 15(1):55-67. PubMed ID: 9084026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study.
    Boutry S; Brunin S; Mahieu I; Laurent S; Vander Elst L; Muller RN
    Contrast Media Mol Imaging; 2008; 3(6):223-32. PubMed ID: 19072771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries.
    Kiwumulo HF; Muwonge H; Ibingira C; Lubwama M; Kirabira JB; Ssekitoleko RT
    BMC Res Notes; 2022 Apr; 15(1):149. PubMed ID: 35468836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of anti-HER2 fragment antibody conjugated to iron oxide nanoparticles for in vivo HER2-targeted photoacoustic tumor imaging.
    Kanazaki K; Sano K; Makino A; Shimizu Y; Yamauchi F; Ogawa S; Ding N; Yano T; Temma T; Ono M; Saji H
    Nanomedicine; 2015 Nov; 11(8):2051-60. PubMed ID: 26238078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the origin and nature of the grating interferometric dark-field contrast obtained with low-brilliance x-ray sources.
    Koenig T; Zuber M; Trimborn B; Farago T; Meyer P; Kunka D; Albrecht F; Kreuer S; Volk T; Fiederle M; Baumbach T
    Phys Med Biol; 2016 May; 61(9):3427-42. PubMed ID: 27046451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-shot diffractive imaging with a table-top femtosecond soft x-ray laser-harmonics source.
    Ravasio A; Gauthier D; Maia FR; Billon M; Caumes JP; Garzella D; Géléoc M; Gobert O; Hergott JF; Pena AM; Perez H; Carré B; Bourhis E; Gierak J; Madouri A; Mailly D; Schiedt B; Fajardo M; Gautier J; Zeitoun P; Bucksbaum PH; Hajdu J; Merdji H
    Phys Rev Lett; 2009 Jul; 103(2):028104. PubMed ID: 19659250
    [TBL] [Abstract][Full Text] [Related]  

  • 58. X-ray microdiffraction of biominerals.
    Tamura N; Gilbert PU
    Methods Enzymol; 2013; 532():501-31. PubMed ID: 24188780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents.
    Hachani R; Lowdell M; Birchall M; Hervault A; Mertz D; Begin-Colin S; Thanh NT
    Nanoscale; 2016 Feb; 8(6):3278-87. PubMed ID: 26460932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.
    Velroyen A; Bech M; Tapfer A; Yaroshenko A; Müller M; Paprottka P; Ingrisch M; Cyran CC; Auweter SD; Nikolaou K; Reiser MF; Pfeiffer F
    PLoS One; 2015; 10(7):e0129512. PubMed ID: 26134130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.