These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 20588459)

  • 1. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.
    Gallardo E; Martínez LJ; Nowak AK; van der Meulen HP; Calleja JM; Tejedor C; Prieto I; Granados D; Taboada AG; García JM; Postigo PA
    Opt Express; 2010 Jun; 18(12):13301-8. PubMed ID: 20588459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized emission of quantum dots in microcavity and anisotropic Purcell factors.
    Lee YS; Lin SD
    Opt Express; 2014 Jan; 22(2):1512-23. PubMed ID: 24515158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity quantum electrodynamics with Anderson-localized modes.
    Sapienza L; Thyrrestrup H; Stobbe S; Garcia PD; Smolka S; Lodahl P
    Science; 2010 Mar; 327(5971):1352-5. PubMed ID: 20223981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic crystal nanocavity laser with a single quantum dot gain.
    Nomura M; Kumagai N; Iwamoto S; Ota Y; Arakawa Y
    Opt Express; 2009 Aug; 17(18):15975-82. PubMed ID: 19724596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcavity coupled quantum dot emission with detuning control.
    Yang Z; Ma P; Bai G; Sun B; Du W; Wang T
    Opt Lett; 2022 Apr; 47(8):2089-2092. PubMed ID: 35427344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity mode emission in weakly coupled quantum dot--cavity systems.
    Tawara T; Kamada H; Hughes S; Okamoto H; Notomi M; Sogawa T
    Opt Express; 2009 Apr; 17(8):6643-54. PubMed ID: 19365491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host.
    Lukishova SG; Bissell LJ; Winkler J; Stroud CR
    Opt Lett; 2012 Apr; 37(7):1259-61. PubMed ID: 22466214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic-crystal microcavity laser with site-controlled quantum-wire active medium.
    Atlasov KA; Calic M; Karlsson KF; Gallo P; Rudra A; Dwir B; Kapon E
    Opt Express; 2009 Sep; 17(20):18178-83. PubMed ID: 19907608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.
    McCutcheon MW; Chang DE; Zhang Y; Lukin MD; Loncar M
    Opt Express; 2009 Dec; 17(25):22689-703. PubMed ID: 20052195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semiconductor source of triggered entangled photon pairs.
    Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly anisotropic decay rates of single quantum dots in photonic crystal membranes.
    Wang Q; Stobbe S; Thyrrestrup H; Hofmann H; Kamp M; Schlereth TW; Höfling S; Lodahl P
    Opt Lett; 2010 Aug; 35(16):2768-70. PubMed ID: 20717451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures.
    Early KT; McCarthy KD; Odoi MY; Sudeep PK; Emrick T; Barnes MD
    ACS Nano; 2009 Feb; 3(2):453-61. PubMed ID: 19236085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized quantum dot emission from photonic crystal nanocavities studied under moderesonant enhanced excitation.
    Oulton R; Jones BD; Lam S; Chalcraft AR; Szymanski D; O'Brien D; Krauss TF; Sanvitto D; Fox AM; Whittaker DM; Hopkinson M; Skolnick MS
    Opt Express; 2007 Dec; 15(25):17221-30. PubMed ID: 19551015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.