BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 20588520)

  • 1. Size-related third-order optical nonlinearities of Au nanoparticle arrays.
    Wang K; Long H; Fu M; Yang G; Lu P
    Opt Express; 2010 Jun; 18(13):13874-9. PubMed ID: 20588520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array.
    Wang K; Long H; Fu M; Yang G; Lu P
    Opt Lett; 2010 May; 35(10):1560-2. PubMed ID: 20479808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the two-photon absorption response exhibited by a bilayer TiO2 film with embedded Au nanoparticles.
    Torres-Torres D; Trejo-Valdez M; Castañeda L; Torres-Torres C; Tamayo-Rivera L; Fernández-Hernández RC; Reyes-Esqueda JA; Muñoz-Saldaña J; Rangel-Rojo R; Oliver A
    Opt Express; 2010 Aug; 18(16):16406-17. PubMed ID: 20721027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical and electrical properties of Au nanoparticles in two-dimensional networks:an effective cluster model.
    Su H; Li Y; Li XY; Wong KS
    Opt Express; 2009 Nov; 17(24):22223-34. PubMed ID: 19997469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.
    Kuznetsov AI; Kiyan R; Chichkov BN
    Opt Express; 2010 Sep; 18(20):21198-203. PubMed ID: 20941016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region.
    Chen Z; Dai H; Liu J; Xu H; Li Z; Zhou ZK; Han JB
    Opt Express; 2013 Jul; 21(15):17568-75. PubMed ID: 23938629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm.
    Falcão-Filho EL; Barbosa-Silva R; Sobral-Filho RG; Brito-Silva AM; Galembeck A; de Araújo CB
    Opt Express; 2010 Oct; 18(21):21636-44. PubMed ID: 20941062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance.
    Lee JH; Mahmoud MA; Sitterle V; Sitterle J; Meredith JC
    J Am Chem Soc; 2009 Apr; 131(14):5048-9. PubMed ID: 19317467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saturable absorption in composites doped with metal nanoparticles.
    Kim KH; Husakou A; Herrmann J
    Opt Express; 2010 Oct; 18(21):21918-25. PubMed ID: 20941091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.
    Zhu S; Chen TP; Cen ZH; Goh ES; Yu SF; Liu YC; Liu Y
    Opt Express; 2010 Oct; 18(21):21926-31. PubMed ID: 20941092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro self-assembly of gold nanoparticle-coated poly(3-hydroxybutyrate) granules exhibiting plasmon-induced thermo-optical enhancements.
    Rey DA; Strickland AD; Kirui D; Niamsiri N; Batt CA
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1804-10. PubMed ID: 20565131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy.
    Hu M; Petrova H; Sekkinen AR; Chen J; McLellan JM; Li ZY; Marquez M; Li X; Xia Y; Hartland GV
    J Phys Chem B; 2006 Oct; 110(40):19923-8. PubMed ID: 17020378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer.
    Yang JS; Sung JH; O BH
    Opt Express; 2010 Jun; 18(13):13418-24. PubMed ID: 20588472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.