These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20588539)

  • 61. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip.
    Neacsu CC; Berweger S; Olmon RL; Saraf LV; Ropers C; Raschke MB
    Nano Lett; 2010 Feb; 10(2):592-6. PubMed ID: 20067296
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials.
    Zhou F; Liu Y; Li ZY; Xia Y
    Opt Express; 2010 Jun; 18(13):13337-44. PubMed ID: 20588463
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Probing the electromagnetic field distribution within a metallic nanodisk.
    Meneses-Rodríguez D; Ferreiro-Vila E; Prieto P; Anguita J; González MU; García-Martín JM; Cebollada A; García-Martín A; Armelles G
    Small; 2011 Dec; 7(23):3317-23. PubMed ID: 21972067
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography.
    Ahn HJ; Thiyagarajan P; Jia L; Kim SI; Yoon JC; Thomas EL; Jang JH
    Nanoscale; 2013 Mar; 5(5):1836-42. PubMed ID: 23381682
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Controlling light localization and light-matter interactions with nanoplasmonics.
    Giannini V; Fernández-Domínguez AI; Sonnefraud Y; Roschuk T; Fernández-García R; Maier SA
    Small; 2010 Nov; 6(22):2498-507. PubMed ID: 20878637
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Absorbance amplification using chromophore-nanoplasmon coupling for ultrasensitive protein quantification.
    Seo S; Edwards L; Logan Liu G
    Anal Chem; 2015 Oct; 87(19):9710-4. PubMed ID: 26284911
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.
    Ma Z; Ni X; Zhang W; Jiang X; Yang H; Yu J; Wang W; Xu L; Xu J; Chen K; Feng D
    Opt Express; 2014 Nov; 22(23):28180-9. PubMed ID: 25402058
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Non-local energy transport in tunneling and plasmonic structures.
    Frias W; Smolyakov A; Hirose A
    Opt Express; 2011 Aug; 19(16):15281-96. PubMed ID: 21934892
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles.
    Ueno K; Misawa H
    Phys Chem Chem Phys; 2013 Mar; 15(12):4093-9. PubMed ID: 23287843
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas.
    Hanke T; Cesar J; Knittel V; Trügler A; Hohenester U; Leitenstorfer A; Bratschitsch R
    Nano Lett; 2012 Feb; 12(2):992-6. PubMed ID: 22268812
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Three-dimensional plasmonic nanofocusing.
    Lindquist NC; Nagpal P; Lesuffleur A; Norris DJ; Oh SH
    Nano Lett; 2010 Apr; 10(4):1369-73. PubMed ID: 20235511
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Compact Bragg grating with embedded metallic nano-structures.
    Mu J; Li X; Huang WP
    Opt Express; 2010 Jul; 18(15):15893-900. PubMed ID: 20720972
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures.
    Wang Y; Aravind I; Cai Z; Shen L; Gibson GN; Chen J; Wang B; Shi H; Song B; Guignon E; Cady NC; Page WD; Pilar A; Cronin SB
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17459-17465. PubMed ID: 32212673
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Plasmonic focusing of infrared SNOM tip patterned with asymmetric structures.
    Qian Q; Yu H; Gou P; Xu J; An Z
    Opt Express; 2015 May; 23(10):12923-34. PubMed ID: 26074545
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Surface integral formulations for the design of plasmonic nanostructures.
    Forestiere C; Iadarola G; Rubinacci G; Tamburrino A; Dal Negro L; Miano G
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2314-27. PubMed ID: 23201792
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metal microneedle fabrication using twisted light with spin.
    Omatsu T; Chujo K; Miyamoto K; Okida M; Nakamura K; Aoki N; Morita R
    Opt Express; 2010 Aug; 18(17):17967-73. PubMed ID: 20721183
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations.
    Chuang WH; Wang JY; Yang CC; Kiang YW
    Opt Express; 2009 Jan; 17(1):104-16. PubMed ID: 19129878
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale.
    Berweger S; Atkin JM; Olmon RL; Raschke MB
    J Phys Chem Lett; 2012 Apr; 3(7):945-52. PubMed ID: 26286425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.