These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20588681)

  • 1. Line coding to enhance the performance of 10-Gb/s CPFSK-ASK directly modulated signals.
    Al-Qazwini Z; Kim H
    Opt Express; 2010 Apr; 18(8):8360-6. PubMed ID: 20588681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QAM accommodated double-side band fast OFDM based on IDCT.
    Yang ZY; Yu S; Chen LQ; Zhou J; Qiao YJ; Gu WY
    Opt Express; 2013 Dec; 21(26):32441-9. PubMed ID: 24514838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of 84-Gb/s and 112-Gb/s polarization-switched quadrature phase-shift keying signals.
    Fischer JK; Molle L; Nölle M; Gross DD; Schmidt-Langhorst C; Schubert C
    Opt Express; 2011 Dec; 19(26):B667-72. PubMed ID: 22274086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and transmission of DPSK signals using a directly modulated passive feedback laser.
    Karar AS; Gao Y; Zhong KP; Ke JH; Cartledge JC
    Opt Express; 2012 Dec; 20(26):B151-8. PubMed ID: 23262846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical binary phase-coded UWB signal generation for multi-user UWB communications.
    Dong J; Yu Y; Zhang Y; Li X; Huang D; Zhang X
    Opt Express; 2011 May; 19(11):10587-94. PubMed ID: 21643312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers.
    Morgado JA; Fonseca D; Cartaxo AV
    Opt Express; 2011 Nov; 19(23):23601-12. PubMed ID: 22109240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON.
    Li Z; Yi L; Wang X; Hu W
    Opt Express; 2015 Aug; 23(16):20249-56. PubMed ID: 26367880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system.
    Bi M; Xiao S; Yi L; He H; Li J; Yang X; Hu W
    Opt Express; 2014 Mar; 22(6):6925-33. PubMed ID: 24664041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay.
    Liu B; Xin X; Zhang L; Yu J; Zhang Q; Yu C
    Opt Express; 2010 Feb; 18(3):2137-43. PubMed ID: 20174042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission of 51.56-Gb/s OOK signal using 1.55-μm directly modulated laser and duobinary electrical equalizer.
    Bae SH; Kim H; Chung YC
    Opt Express; 2016 Oct; 24(20):22555-22562. PubMed ID: 27828326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing.
    Malacarne A; Ashrafi R; Park Y; Azaña J
    Opt Lett; 2011 Nov; 36(21):4290-2. PubMed ID: 22048394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic dispersion pre-compensation for 10.709-Gb/s using a look-up table and a directly modulated laser.
    Karar AS; Yañez M; Jiang Y; Cartledge JC; Harley J; Roberts K
    Opt Express; 2011 Dec; 19(26):B81-9. PubMed ID: 22274107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.
    Kim H
    Opt Express; 2010 Jan; 18(2):1714-21. PubMed ID: 20173999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of flexible bandwidth networking with real-time impairment awareness.
    Geisler DJ; Proietti R; Yin Y; Scott RP; Cai X; Fontaine NK; Paraschis L; Gerstel O; Yoo SJ
    Opt Express; 2011 Dec; 19(26):B736-45. PubMed ID: 22274096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation.
    Jin XQ; Hugues-Salas E; Giddings RP; Wei JL; Groenewald J; Tang JM
    Opt Express; 2011 Oct; 19(21):20557-70. PubMed ID: 21997063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission of 1.25-Gb/s PSK signal generated by using RSOA in 110-km coherent WDM PON.
    Jung SP; Takushima Y; Chung YC
    Opt Express; 2010 Jul; 18(14):14871-7. PubMed ID: 20639974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant improvements in optical power budgets of real-time optical OFDM PON systems.
    Wei JL; Sánchez C; Giddings RP; Hugues-Salas E; Tang JM
    Opt Express; 2010 Sep; 18(20):20732-45. PubMed ID: 20940969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equalization of nonlinear transmission impairments by maximum-likelihood-sequence estimation in digital coherent receivers.
    Khairuzzaman M; Zhang C; Igarashi K; Katoh K; Kikuchi K
    Opt Express; 2010 Mar; 18(5):4776-82. PubMed ID: 20389490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 40 Gb/s, secure optical communication based upon fast reconfigurable time domain spectral phase en/decoding with 40 Gchip/s optical code and symbol overlapping.
    Gao Z; Dai B; Wang X; Kataoka N; Wada N
    Opt Lett; 2011 Nov; 36(22):4326-8. PubMed ID: 22089552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for combating dispersion induced power fading in dispersion compensating fiber.
    Lebedev A; Olmos JJ; Iglesias M; Forchhammer S; Monroy IT
    Opt Express; 2013 Jun; 21(11):13617-25. PubMed ID: 23736614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.