These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20588683)

  • 1. Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm.
    Shirakawa T; Ishikawa KL; Suzuki S; Yamada Y; Takahashi H
    Opt Express; 2010 Apr; 18(8):8383-91. PubMed ID: 20588683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.
    Raulot V; Gérard P; Serio B; Flury M; Kress B; Meyrueis P
    Opt Express; 2010 Aug; 18(17):17974-82. PubMed ID: 20721184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the behavior of a subwavelength diffractive lens in TE and TM polarization allowing some nonstandard functions.
    Raulot V; Gérard P; Serio B; Flury M; Meyrueis P
    Opt Lett; 2011 Apr; 36(7):1194-6. PubMed ID: 21479027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary subwavelength diffractive-lens design.
    Mait JN; Prather DW; Mirotznik MS
    Opt Lett; 1998 Sep; 23(17):1343-5. PubMed ID: 18091779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and optimization of broadband wide-angle antireflection structures for binary diffractive optics.
    Chang CH; Waller L; Barbastathis G
    Opt Lett; 2010 Apr; 35(7):907-9. PubMed ID: 20364165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of binary subwavelength multiphase level computer generated holograms.
    Freese W; Kämpfe T; Kley EB; Tünnermann A
    Opt Lett; 2010 Mar; 35(5):676-8. PubMed ID: 20195316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of microlens properties in the presence of high spherical aberration.
    Testorf M; Sinzinger S
    Appl Opt; 1995 Oct; 34(28):6431-7. PubMed ID: 21060490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinoform diffractive lenses for efficient nano-focusing of hard X-rays.
    Karvinen P; Grolimund D; Willimann M; Meyer B; Birri M; Borca C; Patommel J; Wellenreuther G; Falkenberg G; Guizar-Sicairos M; Menzel A; David C
    Opt Express; 2014 Jul; 22(14):16676-85. PubMed ID: 25090486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens.
    Lou Y; Liu Q; Wang H; Shi Y; He S
    Appl Opt; 2010 Sep; 49(26):4995-5000. PubMed ID: 20830190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refractive and diffractive properties of planar micro-optical elements.
    Rossi M; Kunz RE; Herzig HP
    Appl Opt; 1995 Sep; 34(26):5996-6007. PubMed ID: 21060437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured elliptical gradient-index microlenses.
    Hudelist F; Nowosielski JM; Buczynski R; Waddie AJ; Taghizadeh MR
    Opt Lett; 2010 Jan; 35(2):130-2. PubMed ID: 20081944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves.
    Bloom G; Larat C; Lallier E; Lee-Bouhours MS; Loiseaux B; Huignard JP
    Appl Opt; 2011 Feb; 50(5):701-9. PubMed ID: 21343992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave-optical design of a combined refractive-diffractive varifocal lens.
    Thiele S; Seifert A; Herkommer AM
    Opt Express; 2014 Jun; 22(11):13343-50. PubMed ID: 24921528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffractive lens design for optimized focusing.
    Wan X; Shen B; Menon R
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):B27-33. PubMed ID: 25606777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband Metallic Planar Microlenses in an Array: the Focusing Coupling Effect.
    Yu Y; Wang P; Zhu Y; Diao J
    Nanoscale Res Lett; 2016 Dec; 11(1):109. PubMed ID: 26922796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperbolic secant slit lens for subwavelength focusing of light.
    Nalimov AG; Kotlyar VV
    Opt Lett; 2013 Aug; 38(15):2702-4. PubMed ID: 23903116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size nondiffracting beam from a subwavelength metallic hole with concentric dielectric gratings.
    Kim H; Park J; Lee B
    Appl Opt; 2009 Nov; 48(31):G68-72. PubMed ID: 19881650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the chromatic aberration of microlenses.
    Ruffieux P; Scharf T; Herzig HP; Völkel R; Weible KJ
    Opt Express; 2006 May; 14(11):4687-94. PubMed ID: 19516624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and analysis of thin optical lens composed of low-index subwavelength structures.
    Siraji AA; Zhao Y
    Appl Opt; 2019 Jun; 58(17):4654-4664. PubMed ID: 31251285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.