These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography. Kitaguchi Y; Fujikado T; Kusaka S; Yamaguchi T; Mihashi T; Tano Y Am J Ophthalmol; 2009 Jul; 148(1):97-104.e2. PubMed ID: 19327747 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ojima Y; Hangai M; Sasahara M; Gotoh N; Inoue R; Yasuno Y; Makita S; Yatagai T; Tsujikawa A; Yoshimura N Ophthalmology; 2007 Dec; 114(12):2197-207. PubMed ID: 17507096 [TBL] [Abstract][Full Text] [Related]
11. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. Fingler J; Readhead C; Schwartz DM; Fraser SE Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5055-9. PubMed ID: 18566457 [TBL] [Abstract][Full Text] [Related]
12. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Hangai M; Ojima Y; Gotoh N; Inoue R; Yasuno Y; Makita S; Yamanari M; Yatagai T; Kita M; Yoshimura N Ophthalmology; 2007 Apr; 114(4):763-73. PubMed ID: 17187861 [TBL] [Abstract][Full Text] [Related]
14. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Ikuno Y; Maruko I; Yasuno Y; Miura M; Sekiryu T; Nishida K; Iida T Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5536-40. PubMed ID: 21508114 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Esmaeelpour M; Povazay B; Hermann B; Hofer B; Kajic V; Kapoor K; Sheen NJ; North RV; Drexler W Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5260-6. PubMed ID: 20445110 [TBL] [Abstract][Full Text] [Related]
16. Optical coherence tomography of enucleated human eye specimens with histological correlation: origin of the outer "red line". Ghazi NG; Dibernardo C; Ying HS; Mori K; Gehlbach PL Am J Ophthalmol; 2006 Apr; 141(4):719-26. PubMed ID: 16564808 [TBL] [Abstract][Full Text] [Related]
17. Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea. Kitaguchi Y; Fujikado T; Bessho K; Sakaguchi H; Gomi F; Yamaguchi T; Nakazawa N; Mihashi T; Tano Y Ophthalmology; 2008 Oct; 115(10):1771-7. PubMed ID: 18486223 [TBL] [Abstract][Full Text] [Related]
18. In vivo thickness and birefringence determination of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Cense B; Chen TC; de Boer JF Bull Soc Belge Ophtalmol; 2006; (302):109-21. PubMed ID: 17265793 [TBL] [Abstract][Full Text] [Related]
19. Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri). Abbott CJ; McBrien NA; Grünert U; Pianta MJ Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):414-23. PubMed ID: 18708623 [TBL] [Abstract][Full Text] [Related]