BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20588705)

  • 1. Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser.
    Nedosekin DA; Sarimollaoglu M; Shashkov EV; Galanzha EI; Zharov VP
    Opt Express; 2010 Apr; 18(8):8605-20. PubMed ID: 20588705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers.
    Nedosekin DA; Sarimollaoglu M; Ye JH; Galanzha EI; Zharov VP
    Cytometry A; 2011 Oct; 79(10):825-33. PubMed ID: 21786417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pulsed laser parameters on photoacoustic flow cytometry efficiency in vitro and in vivo.
    Grishin OV; Shushunova NA; Bratashov DN; Prikhozhdenko ES; Verkhovskii RA; Kozlova AA; Abdurashitov AS; Sindeeva OA; Karavaev AS; Kulminskiy DD; Shashkov EV; Inozemtseva OA; Tuchin VV
    Cytometry A; 2023 Nov; 103(11):868-880. PubMed ID: 37455600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoacoustic flow cytometry.
    Galanzha EI; Zharov VP
    Methods; 2012 Jul; 57(3):280-96. PubMed ID: 22749928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo photoacoustic flow cytometry for early malaria diagnosis.
    Cai C; Carey KA; Nedosekin DA; Menyaev YA; Sarimollaoglu M; Galanzha EI; Stumhofer JS; Zharov VP
    Cytometry A; 2016 Jun; 89(6):531-42. PubMed ID: 27078044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume.
    Proskurnin MA; Zhidkova TV; Volkov DS; Sarimollaoglu M; Galanzha EI; Mock D; Nedosekin DA; Zharov VP
    Cytometry A; 2011 Oct; 79(10):834-47. PubMed ID: 21905207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Resolution Photoacoustic Microscopy With Fast Laser Scanning and Fixed Photoacoustic Detector
    Ishikawa K; Shintate R; Nagaoka R; Saijo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4800-4803. PubMed ID: 30441420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal and photoacoustic Raman cytometry in vitro and in vivo.
    Shashkov EV; Galanzha EI; Zharov VP
    Opt Express; 2010 Mar; 18(7):6929-44. PubMed ID: 20389713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2  MHz multi-wavelength pulsed laser for functional photoacoustic microscopy.
    Liang Y; Jin L; Guan BO; Wang L
    Opt Lett; 2017 Apr; 42(7):1452-1455. PubMed ID: 28362790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo.
    Zharov VP; Galanzha EI; Shashkov EV; Kim JW; Khlebtsov NG; Tuchin VV
    J Biomed Opt; 2007; 12(5):051503. PubMed ID: 17994867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence mechanism of the temporal duration of laser irradiation on photoacoustic technique: a review.
    Gao R; Liu Y; Qi S; Song L; Meng J; Liu C
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11530. PubMed ID: 38632983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser speckle contrast imaging system using nanosecond pulse laser source.
    Zhao Y; Wang K; Li W; Zhang H; Qian Z; Liu Y
    J Biomed Opt; 2020 May; 25(5):1-10. PubMed ID: 32452171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable flat-top nanosecond fiber laser oscillator and 280 W average power nanosecond Yb-doped fiber amplifier.
    Li W; Hao Q; Yan M; Zeng H
    Opt Express; 2009 Jun; 17(12):10113-8. PubMed ID: 19506664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosecond pulse laser generation at 1.55 and 2  μm regions by integrating a piece of newly developed chromium-doped fiber-based saturable absorber.
    Dutta D; Paul MC; Dhar A; Das S; Mohd Farid MF; Latiff AA; Ahmad H; Harun SW
    Appl Opt; 2019 Aug; 58(24):6528-6534. PubMed ID: 31503581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes.
    Martinez A; Yamashita S
    Opt Express; 2011 Mar; 19(7):6155-63. PubMed ID: 21451640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Customized Photoacoustic System Using Doubly Q-Switched Nd:YAG Laser and Multiple Axes Stages for Laboratory Applications.
    Jung U; Choi JH; Choo HT; Kim GU; Ryu J; Choi H
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts.
    Galanzha EI; Sarimollaoglu M; Nedosekin DA; Keyrouz SG; Mehta JL; Zharov VP
    Cytometry A; 2011 Oct; 79(10):814-24. PubMed ID: 21976458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal flow cytometry in vitro for detection and imaging of individual moving cells.
    Zharov VP; Galanzha EI; Tuchin VV
    Cytometry A; 2007 Apr; 71(4):191-206. PubMed ID: 17323354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application.
    Piao Z; Zeng L; Chen Z; Kim CS
    Appl Phys Lett; 2016 Apr; 108(14):143701. PubMed ID: 27110032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining simultaneous dual-band carbon nanotube mode-locking Erbium-doped fiber laser by net gain cross section variation.
    Rosa HG; Steinberg D; Thoroh de Souza EA
    Opt Express; 2014 Nov; 22(23):28711-8. PubMed ID: 25402111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.