These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20588747)

  • 21. Transmission resonances through aperiodic arrays of subwavelength apertures.
    Matsui T; Agrawal A; Nahata A; Vardeny ZV
    Nature; 2007 Mar; 446(7135):517-21. PubMed ID: 17392781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Superconducting Dual-Channel Photonic Switch.
    Srivastava YK; Manjappa M; Cong L; Krishnamoorthy HNS; Savinov V; Pitchappa P; Singh R
    Adv Mater; 2018 Jun; ():e1801257. PubMed ID: 29870580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire.
    Sigle W; Nelayah J; Koch CT; van Aken PA
    Opt Lett; 2009 Jul; 34(14):2150-2. PubMed ID: 19823531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning the resonance in high-temperature superconducting terahertz metamaterials.
    Chen HT; Yang H; Singh R; O'Hara JF; Azad AK; Trugman SA; Jia QX; Taylor AJ
    Phys Rev Lett; 2010 Dec; 105(24):247402. PubMed ID: 21231556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Universal behaviour of high-
    Lim WX; Singh R
    Nano Converg; 2018; 5(1):5. PubMed ID: 29568722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials.
    Hor YL; Szabó Z; Lim HC; Federici JF; Li EP
    Appl Opt; 2010 Mar; 49(8):1179-84. PubMed ID: 20220872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focusing surface waves with an inhomogeneous metamaterial lens.
    Escobar MA; Berthomé M; Ma C; Liu Z
    Appl Opt; 2010 Mar; 49(7):A18-22. PubMed ID: 20197798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance.
    Moritake Y; Kanamori Y; Hane K
    Sci Rep; 2016 Sep; 6():33208. PubMed ID: 27622503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zero loss magnetic metamaterials using powered active unit cells.
    Yuan Y; Popa BI; Cummer SA
    Opt Express; 2009 Aug; 17(18):16135-43. PubMed ID: 19724613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical negative refraction in bulk metamaterials of nanowires.
    Yao J; Liu Z; Liu Y; Wang Y; Sun C; Bartal G; Stacy AM; Zhang X
    Science; 2008 Aug; 321(5891):930. PubMed ID: 18703734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fano interference between collective modes in cuprate high-T
    Chu H; Kovalev S; Wang ZX; Schwarz L; Dong T; Feng L; Haenel R; Kim MJ; Shabestari P; Hoang LP; Honasoge K; Dawson RD; Putzky D; Kim G; Puviani M; Chen M; Awari N; Ponomaryov AN; Ilyakov I; Bluschke M; Boschini F; Zonno M; Zhdanovich S; Na M; Christiani G; Logvenov G; Jones DJ; Damascelli A; Minola M; Keimer B; Manske D; Wang N; Deinert JC; Kaiser S
    Nat Commun; 2023 Mar; 14(1):1343. PubMed ID: 36906577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A close-ring pair terahertz metamaterial resonating at normal incidence.
    Gu J; Han J; Lu X; Singh R; Tian Z; Xing Q; Zhang W
    Opt Express; 2009 Oct; 17(22):20307-12. PubMed ID: 19997257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actively tunable Fano resonances based on colossal magneto-resistant metamaterials.
    Tian JB; Yan CC; Wang C; Han Y; Zou RY; Li DD; Xu ZJ; Zhang DH
    Opt Lett; 2015 Apr; 40(7):1286-9. PubMed ID: 25831314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic metamaterials: From local resonances to broad horizons.
    Ma G; Sheng P
    Sci Adv; 2016 Feb; 2(2):e1501595. PubMed ID: 26933692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exceptional points in Fano-resonant graphene metamaterials.
    Liu Q; Wang B; Ke S; Long H; Wang K; Lu P
    Opt Express; 2017 Apr; 25(7):7203-7212. PubMed ID: 28380845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations.
    Arslanagić S; Breinbjerg O
    Materials (Basel); 2010 Dec; 4(1):117-130. PubMed ID: 28879980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chiral metamaterials: retrieval of the effective parameters with and without substrate.
    Zhao R; Koschny T; Soukoulis CM
    Opt Express; 2010 Jul; 18(14):14553-67. PubMed ID: 20639941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Metamaterial Analog of the Ising Model.
    Cong L; Savinov V; Srivastava YK; Han S; Singh R
    Adv Mater; 2018 Aug; ():e1804210. PubMed ID: 30160328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.