These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20588766)

  • 1. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances.
    Krichel NJ; McCarthy A; Buller GS
    Opt Express; 2010 Apr; 18(9):9192-206. PubMed ID: 20588766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting.
    McCarthy A; Collins RJ; Krichel NJ; Fernández V; Wallace AM; Buller GS
    Appl Opt; 2009 Nov; 48(32):6241-51. PubMed ID: 19904323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity.
    Liang Y; Huang J; Ren M; Feng B; Chen X; Wu E; Wu G; Zeng H
    Opt Express; 2014 Feb; 22(4):4662-70. PubMed ID: 24663784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector.
    McCarthy A; Ren X; Della Frera A; Gemmell NR; Krichel NJ; Scarcella C; Ruggeri A; Tosi A; Buller GS
    Opt Express; 2013 Sep; 21(19):22098-113. PubMed ID: 24104102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates.
    Hiskett PA; Parry CS; McCarthy A; Buller GS
    Opt Express; 2008 Sep; 16(18):13685-98. PubMed ID: 18772980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection.
    McCarthy A; Krichel NJ; Gemmell NR; Ren X; Tanner MG; Dorenbos SN; Zwiller V; Hadfield RH; Buller GS
    Opt Express; 2013 Apr; 21(7):8904-15. PubMed ID: 23571981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence lifetime imaging by time-correlated single-photon counting.
    Becker W; Bergmann A; Hink MA; König K; Benndorf K; Biskup C
    Microsc Res Tech; 2004 Jan; 63(1):58-66. PubMed ID: 14677134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range photon-efficient 3D imaging without range ambiguity.
    Dai C; Ye WL; Yu C; Huang X; Li ZP; Xu F
    Opt Lett; 2023 Mar; 48(6):1542-1545. PubMed ID: 36946973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed photon-counting laser ranging for broad range of distances.
    Du B; Pang C; Wu D; Li Z; Peng H; Tao Y; Wu E; Wu G
    Sci Rep; 2018 Mar; 8(1):4198. PubMed ID: 29520022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system.
    Chen S; Liu D; Zhang W; You L; He Y; Zhang W; Yang X; Wu G; Ren M; Zeng H; Wang Z; Xie X; Jiang M
    Appl Opt; 2013 May; 52(14):3241-5. PubMed ID: 23669836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-photon three-dimensional imaging at up to 10 kilometers range.
    Pawlikowska AM; Halimi A; Lamb RA; Buller GS
    Opt Express; 2017 May; 25(10):11919-11931. PubMed ID: 28788749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser ranging and mapping with a photon-counting detector.
    Priedhorsky WC; Smith RC; Ho C
    Appl Opt; 1996 Jan; 35(3):441-52. PubMed ID: 21069029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system.
    Oh MS; Kong HJ; Kim TH; Jo SE; Kim BW; Park DJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):759-65. PubMed ID: 21532685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-photon imaging.
    Kirmani A; Venkatraman D; Shin D; Colaço A; Wong FN; Shapiro JH; Goyal VK
    Science; 2014 Jan; 343(6166):58-61. PubMed ID: 24292628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting.
    Becker W; Bergmann A; Haustein E; Petrasek Z; Schwille P; Biskup C; Kelbauskas L; Benndorf K; Klöcker N; Anhut T; Riemann I; König K
    Microsc Res Tech; 2006 Mar; 69(3):186-95. PubMed ID: 16538624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time.
    Cruickshank PA; Bolton DR; Robertson DA; Hunter RI; Wylde RJ; Smith GM
    Rev Sci Instrum; 2009 Oct; 80(10):103102. PubMed ID: 19895049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underwater depth imaging using time-correlated single-photon counting.
    Maccarone A; McCarthy A; Ren X; Warburton RE; Wallace AM; Moffat J; Petillot Y; Buller GS
    Opt Express; 2015 Dec; 23(26):33911-26. PubMed ID: 26832050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pixel detector-based single photon-counting system as fast spectrometer for diagnostic X-ray beams.
    Carpentieri C; Bisogni MG; Del Guerra A; Delogu P; Fantacci ME; Fogli J; Marchi A; Marzulli V; Rosso V; Stefanini A; Tofani A
    Radiat Prot Dosimetry; 2008; 129(1-3):119-22. PubMed ID: 18487616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors.
    Kuzmenko K; Vines P; Halimi A; Collins RJ; Maccarone A; McCarthy A; Greener ZM; Kirdoda J; Dumas DCS; Llin LF; Mirza MM; Millar RW; Paul DJ; Buller GS
    Opt Express; 2020 Jan; 28(2):1330-1344. PubMed ID: 32121846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.