These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20588808)

  • 1. Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators.
    Hsieh HS; Feng KM; Lee MC
    Opt Express; 2010 Apr; 18(9):9613-21. PubMed ID: 20588808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high-speed wavelength conversion in a silicon photonic chip.
    Hu H; Ji H; Galili M; Pu M; Peucheret C; Christian H Mulvad H; Yvind K; Hvam JM; Jeppesen P; Oxenløwe LK
    Opt Express; 2011 Oct; 19(21):19886-94. PubMed ID: 21996996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-optical DQPSK signal regeneration using 2R amplitude regenerators.
    Matsumoto M
    Opt Express; 2010 Jan; 18(1):10-24. PubMed ID: 20173816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge.
    Liu X; Driscoll JB; Dadap JI; Osgood RM; Assefa S; Vlasov YA; Green WM
    Opt Express; 2011 Apr; 19(8):7778-89. PubMed ID: 21503088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of picosecond pulse nonlinear propagation in chalcogenide As(2)S(3) fiber.
    Xiong C; Magi E; Luan F; Tuniz A; Dekker S; Sanghera JS; Shaw LB; Aggarwal ID; Eggleton BJ
    Appl Opt; 2009 Oct; 48(29):5467-74. PubMed ID: 19823228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear loss dynamics in a silicon slow-light photonic crystal waveguide.
    Corcoran B; Monat C; Pudo D; Eggleton BJ; Krauss TF; Moss DJ; O'Faolain L; Pelusi M; White TP
    Opt Lett; 2010 Apr; 35(7):1073-5. PubMed ID: 20364221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuously tunable 1.16 micros optical delay of 100 Gbit/s DQPSK and 50 Gbit/s DPSK signals using wavelength conversion and chromatic dispersion.
    Nuccio SR; Yilmaz OF; Wang X; Wang J; Wu X; Willner AE
    Opt Lett; 2010 Jun; 35(11):1819-21. PubMed ID: 20517427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators.
    Xiong M; Ding Y; Zhang Q; Zhang X
    Appl Opt; 2011 Oct; 50(28):5390-6. PubMed ID: 22016205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon.
    Bradley JD; Costa e Silva M; Gay M; Bramerie L; Driessen A; Wörhoff K; Simon JC; Pollnau M
    Opt Express; 2009 Nov; 17(24):22201-8. PubMed ID: 19997466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-phase-modulation in submicron silicon-on-insulator photonic wires.
    Dulkeith E; Vlasov YA; Chen X; Panoiu NC; Osgood RM
    Opt Express; 2006 Jun; 14(12):5524-34. PubMed ID: 19516720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-optical 1-to-8 wavelength multicasting at 20 Gbit/s exploiting self-phase modulation in dispersion flattened highly nonlinear photonic crystal fiber.
    Hui ZQ
    ScientificWorldJournal; 2014; 2014():828179. PubMed ID: 24711738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broad-band optical parametric gain on a silicon photonic chip.
    Foster MA; Turner AC; Sharping JE; Schmidt BS; Lipson M; Gaeta AL
    Nature; 2006 Jun; 441(7096):960-3. PubMed ID: 16791190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J; Li X
    Opt Express; 2013 Jan; 21(2):1840-8. PubMed ID: 23389168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 50 dB parametric on-chip gain in silicon photonic wires.
    Kuyken B; Liu X; Roelkens G; Baets R; Osgood RM; Green WM
    Opt Lett; 2011 Nov; 36(22):4401-3. PubMed ID: 22089577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical pulse shaping for ultrawideband doublet pulses using nonlinear optical loop mirror with optical parametric amplification.
    Lee J; Chang YM; Lee JH
    Opt Lett; 2011 Nov; 36(21):4227-9. PubMed ID: 22048373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-phase modulation-induced spectral broadening in silicon waveguides.
    Zhang Y; Husko C; Lefrancois S; Rey IH; Krauss TF; Schröder J; Eggleton BJ
    Opt Express; 2016 Jan; 24(1):443-51. PubMed ID: 26832275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires.
    Hsieh IW; Chen X; Dadap JI; Panoiu NC; Osgood RM; McNab SJ; Vlasov YA
    Opt Express; 2007 Feb; 15(3):1135-46. PubMed ID: 19532341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signed chromatic dispersion monitoring of 100Gbit/s CS-RZ DQPSK signal by evaluating the asymmetry ratio of delay tap sampling.
    Li Z; Jian Z; Cheng L; Yang Y; Lu C; Lau AP; Yu C; Tam HY; Wai PK
    Opt Express; 2010 Feb; 18(3):3149-57. PubMed ID: 20174153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in soliton transmission technology.
    Nakazawa M; Kubota H; Suzuki K; Yamada E; Sahara A
    Chaos; 2000 Sep; 10(3):486-514. PubMed ID: 12779401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range.
    Dave UD; Kuyken B; Leo F; Gorza SP; Combrie S; De Rossi A; Raineri F; Roelkens G
    Opt Express; 2015 Feb; 23(4):4650-7. PubMed ID: 25836502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.