These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20588859)

  • 1. Brillouin spectroscopy of YAG-derived optical fibers.
    Dragic P; Law PC; Ballato J; Hawkins T; Foy P
    Opt Express; 2010 May; 18(10):10055-67. PubMed ID: 20588859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brillouin spectroscopy of a novel baria-doped silica glass optical fiber.
    Dragic P; Kucera C; Furtick J; Guerrier J; Hawkins T; Ballato J
    Opt Express; 2013 May; 21(9):10924-41. PubMed ID: 23669949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.
    Law PC; Dragic PD
    Opt Express; 2010 Aug; 18(18):18852-65. PubMed ID: 20940778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous YAG:Nd3+ fibers with excitation and emission in the human "NIR optical window" as luminescent drug carriers.
    Ma Z; Ji H; Tan D; Dong G; Teng Y; Zhou J; Qiu J
    Chemistry; 2012 Feb; 18(9):2609-16. PubMed ID: 22271350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid germanium/silica optical fibers for endoscopic delivery of erbium:YAG laser radiation.
    Chaney CA; Yang Y; Fried NM
    Lasers Surg Med; 2004; 34(1):5-11. PubMed ID: 14755419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium: YAG laser radiation.
    Polletto TJ; Ngo AK; Tchapyjnikov A; Levin K; Tran D; Fried NM
    Lasers Surg Med; 2006 Sep; 38(8):787-91. PubMed ID: 16988959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers.
    Mamdem YS; Burov E; de Montmorillon LA; Jaouën Y; Moreau G; Gabet R; Taillade F
    Opt Express; 2012 Jan; 20(2):1790-7. PubMed ID: 22274523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of fluoride and sapphire optical fibers for Er: YAG laser lithotripsy.
    Qiu J; Teichman J; Wang T; Elmaanaoui B; Gamez D; Milner TE
    J Biophotonics; 2010 Jun; 3(5-6):277-83. PubMed ID: 20414904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency, room-temperature nanosecond Yb:YAG laser.
    Siebold M; Loeser M; Schramm U; Koerner J; Wolf M; Hellwing M; Hein J; Ertel K
    Opt Express; 2009 Oct; 17(22):19887-93. PubMed ID: 19997211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles.
    Ward B; Spring J
    Opt Express; 2009 Aug; 17(18):15685-99. PubMed ID: 19724568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core.
    Zou W; He Z; Hotate K
    Opt Express; 2012 May; 20(10):11083-90. PubMed ID: 22565731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-accuracy measurement of cladding noncircularity based on phase velocity difference between acoustic polarization modes.
    Lim SD; Park HC; Lee K; Lee SB; Kim BY
    Opt Express; 2010 Feb; 18(4):3574-81. PubMed ID: 20389366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise tailoring of acoustic velocity in optical fibers by hydrogenation and UV exposure.
    Kong F; Dong L
    Opt Express; 2012 Dec; 20(25):27810-9. PubMed ID: 23262726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The temperature dependence of Cr3+:YAG zero-phonon lines.
    Marceddu M; Manca M; Ricci PC; Anedda A
    J Phys Condens Matter; 2012 Apr; 24(13):135401. PubMed ID: 22392847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Brillouin frequency shift and acoustic waves in a hollow optical fiber.
    Jeong Y; Song KY; Hotate K; Oh K
    Opt Lett; 2009 Oct; 34(20):3217-9. PubMed ID: 19838278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electron irradiation on optical properties of Bismuth doped silica fibers.
    Kir'yanov AV; Dvoyrin VV; Mashinsky VM; Il'ichev NN; Kozlova NS; Dianov EM
    Opt Express; 2011 Mar; 19(7):6599-608. PubMed ID: 21451687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers.
    Firstov SV; Khopin VF; Bufetov IA; Firstova EG; Guryanov AN; Dianov EM
    Opt Express; 2011 Sep; 19(20):19551-61. PubMed ID: 21996896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gamma-irradiation and air annealing on Yb-doped Y3Al5O12 single crystal.
    Zeng X; Xu X; Wang X; Zhao Z; Zhao G; Xu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):860-4. PubMed ID: 17644027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic index of Ge-doped optical fibers.
    Herstrøm S; Grüner-Nielsen L; Pálsdóttir B
    Opt Lett; 2009 Dec; 34(23):3689-91. PubMed ID: 19953163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers.
    Yoo S; Codemard CA; Jeong Y; Sahu JK; Nilsson J
    Appl Opt; 2010 Mar; 49(8):1388-99. PubMed ID: 20220896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.