BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20588861)

  • 1. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer.
    Lee JY; Peumans P
    Opt Express; 2010 May; 18(10):10078-87. PubMed ID: 20588861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles.
    Qu D; Liu F; Huang Y; Xie W; Xu Q
    Opt Express; 2011 Nov; 19(24):24795-803. PubMed ID: 22109507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric particle and void resonators for thin film solar cell textures.
    Mann SA; Grote RR; Osgood RM; Schuller JA
    Opt Express; 2011 Dec; 19(25):25729-40. PubMed ID: 22273965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triangular metallic gratings for large absorption enhancement in thin film Si solar cells.
    Battal E; Yogurt TA; Aygun LE; Okyay AK
    Opt Express; 2012 Apr; 20(9):9458-64. PubMed ID: 22535035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption enhancement using photonic crystals for silicon thin film solar cells.
    Park Y; Drouard E; El Daif O; Letartre X; Viktorovitch P; Fave A; Kaminski A; Lemiti M; Seassal C
    Opt Express; 2009 Aug; 17(16):14312-21. PubMed ID: 19654839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes.
    Ye Z; Chaudhary S; Kuang P; Ho KM
    Opt Express; 2012 May; 20(11):12213-21. PubMed ID: 22714211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells.
    Agrawal M; Peumans P
    Opt Express; 2008 Apr; 16(8):5385-96. PubMed ID: 18542641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings.
    Lee YC; Huang CF; Chang JY; Wu ML
    Opt Express; 2008 May; 16(11):7969-75. PubMed ID: 18545506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
    Sergeant NP; Pincon O; Agrawal M; Peumans P
    Opt Express; 2009 Dec; 17(25):22800-12. PubMed ID: 20052206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.
    Mahpeykar SM; Xiong Q; Wang X
    Opt Express; 2014 Oct; 22 Suppl 6():A1576-88. PubMed ID: 25607315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector.
    Dahan N; Jehl Z; Guillemoles JF; Lincot D; Naghavi N; Greffet JJ
    Opt Express; 2013 Feb; 21(3):2563-80. PubMed ID: 23481714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light harvesting improvement of organic solar cells with self-enhanced active layer designs.
    Chen L; Sha WE; Choy WC
    Opt Express; 2012 Mar; 20(7):8175-85. PubMed ID: 22453487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells.
    Han SE; Chen G
    Nano Lett; 2010 Nov; 10(11):4692-6. PubMed ID: 20925323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.
    Osella S; Narita A; Schwab MG; Hernandez Y; Feng X; Müllen K; Beljonne D
    ACS Nano; 2012 Jun; 6(6):5539-48. PubMed ID: 22631451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
    Pennanen AM; Toppari JJ
    Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.