These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 20588900)
1. Dynamic deformation of red blood cell in dual-trap optical tweezers. Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900 [TBL] [Abstract][Full Text] [Related]
2. Mechanical modeling of red blood cells during optical stretching. Tan Y; Sun D; Huang W J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers. Yu L; Sheng Y; Chiou A Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438 [TBL] [Abstract][Full Text] [Related]
4. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps. Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841 [TBL] [Abstract][Full Text] [Related]
5. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching. Li C; Liu YP; Liu KK; Lai AK IEEE Trans Nanobioscience; 2008 Mar; 7(1):80-90. PubMed ID: 18334458 [TBL] [Abstract][Full Text] [Related]
6. Human red blood cells deformed under thermal fluid flow. Foo JJ; Chan V; Feng ZQ; Liu KK Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379 [TBL] [Abstract][Full Text] [Related]
7. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher. Ekpenyong AE; Posey CL; Chaput JL; Burkart AK; Marquardt MM; Smith TJ; Nichols MG Appl Opt; 2009 Nov; 48(32):6344-54. PubMed ID: 19904335 [TBL] [Abstract][Full Text] [Related]
8. The deformation behavior of multiple red blood cells in a capillary vessel. Gong X; Sugiyama K; Takagi S; Matsumoto Y J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140 [TBL] [Abstract][Full Text] [Related]
9. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Klöppel T; Wall WA Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846 [TBL] [Abstract][Full Text] [Related]
10. The nonlinear mechanical response of the red blood cell. Yoon YZ; Kotar J; Yoon G; Cicuta P Phys Biol; 2008 Aug; 5(3):036007. PubMed ID: 18698116 [TBL] [Abstract][Full Text] [Related]
11. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion. Kamgoué A; Ohayon J; Tracqui P J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473 [TBL] [Abstract][Full Text] [Related]
12. Mechanical property analysis of stored red blood cell using optical tweezers. Li Y; Wen C; Xie H; Ye A; Yin Y Colloids Surf B Biointerfaces; 2009 May; 70(2):169-73. PubMed ID: 19168336 [TBL] [Abstract][Full Text] [Related]
13. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Quinn DJ; Pivkin I; Wong SY; Chiam KH; Dao M; Karniadakis GE; Suresh S Ann Biomed Eng; 2011 Mar; 39(3):1041-50. PubMed ID: 21240637 [TBL] [Abstract][Full Text] [Related]
14. Mechanical force characterization in manipulating live cells with optical tweezers. Wu Y; Sun D; Huang W J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769 [TBL] [Abstract][Full Text] [Related]
15. Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps. Wojdyla M; Raj S; Petrov D J Biomed Opt; 2012 Sep; 17(9):97006-1. PubMed ID: 23085923 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mills JP; Qie L; Dao M; Lim CT; Suresh S Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930 [TBL] [Abstract][Full Text] [Related]
17. Wall shear stress in backward-facing step flow of a red blood cell suspension. Gijsen FJ; van de Vosse FN; Janssen JD Biorheology; 1998; 35(4-5):263-79. PubMed ID: 10474654 [TBL] [Abstract][Full Text] [Related]
19. A particle dynamic model of red blood cell aggregation kinetics. Fenech M; Garcia D; Meiselman HJ; Cloutier G Ann Biomed Eng; 2009 Nov; 37(11):2299-309. PubMed ID: 19669883 [TBL] [Abstract][Full Text] [Related]
20. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers. Nagayama K; Matsumoto T J Biomech; 2010 May; 43(8):1443-9. PubMed ID: 20189183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]