BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20589056)

  • 1. Double scattering of light from Biophotonic Nanostructures with short-range order.
    Noh H; Liew SF; Saranathan V; Prum RO; Mochrie SG; Dufresne ER; Cao H
    Opt Express; 2010 May; 18(11):11942-8. PubMed ID: 20589056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How noniridescent colors are generated by quasi-ordered structures of bird feathers.
    Noh H; Liew SF; Saranathan V; Mochrie SG; Prum RO; Dufresne ER; Cao H
    Adv Mater; 2010 Jul; 22(26-27):2871-80. PubMed ID: 20401903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers.
    Noh H; Liew SF; Saranathan V; Prum RO; Mochrie SG; Dufresne ER; Cao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051923. PubMed ID: 20866277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.
    Saranathan V; Forster JD; Noh H; Liew SF; Mochrie SG; Cao H; Dufresne ER; Prum RO
    J R Soc Interface; 2012 Oct; 9(75):2563-80. PubMed ID: 22572026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers.
    D'Alba L; Kieffer L; Shawkey MD
    J Exp Biol; 2012 Apr; 215(Pt 8):1272-7. PubMed ID: 22442364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films.
    Stavenga DG; Tinbergen J; Leertouwer HL; Wilts BD
    J Exp Biol; 2011 Dec; 214(Pt 23):3960-7. PubMed ID: 22071186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay (Cyanocitta stelleri).
    Shawkey MD; Hill GE
    J Exp Biol; 2006 Apr; 209(Pt 7):1245-50. PubMed ID: 16547296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-range order and near-field effects on optical scattering and structural coloration.
    Liew SF; Forster J; Noh H; Schreck CF; Saranathan V; Lu X; Yang L; Prum RO; O'Hern CS; Dufresne ER; Cao H
    Opt Express; 2011 Apr; 19(9):8208-17. PubMed ID: 21643071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A closer look at the feather coloration in the male purple sunbird, Nectarinia asiatica.
    Mahapatra BB; Marathe SA; Meyer-Rochow VB; Mishra M
    Micron; 2016 Jun; 85():44-50. PubMed ID: 27088228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers.
    D'Alba L; Saranathan V; Clarke JA; Vinther JA; Prum RO; Shawkey MD
    Biol Lett; 2011 Aug; 7(4):543-6. PubMed ID: 21307042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of single gyroid photonic crystals in bird feathers.
    Saranathan V; Narayanan S; Sandy A; Dufresne ER; Prum RO
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote nocturnal bird classification by spectroscopy in extended wavelength ranges.
    Lundin P; Samuelsson P; Svanberg S; Runemark A; Åkesson S; Brydegaard M
    Appl Opt; 2011 Jul; 50(20):3396-411. PubMed ID: 21743546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring spatially- and directionally-varying light scattering from biological material.
    Harvey TA; Bostwick KS; Marschner S
    J Vis Exp; 2013 May; (75):e50254. PubMed ID: 23712059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.
    Shawkey MD; Maia R; D'Alba L
    J Morphol; 2011 Nov; 272(11):1399-407. PubMed ID: 21755527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear optical properties of nanocrystalline diamond.
    Trojánek F; Zídek K; Dzurnák B; Kozák M; Malý P
    Opt Express; 2010 Jan; 18(2):1349-57. PubMed ID: 20173962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired parabola subwavelength structures for improved broadband antireflection.
    Song YM; Jang SJ; Yu JS; Lee YT
    Small; 2010 May; 6(9):984-7. PubMed ID: 20461734
    [No Abstract]   [Full Text] [Related]  

  • 18. Evaluation of the usefulness of bird feathers as a non-destructive biomonitoring tool for organic pollutants: a comparative and meta-analytical approach.
    Jaspers VL; Voorspoels S; Covaci A; Lepoint G; Eens M
    Environ Int; 2007 Apr; 33(3):328-37. PubMed ID: 17198730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of induced chirality in stirred solutions of supramolecular nanofibers.
    Arteaga O; Canillas A; Purrello R; Ribó JM
    Opt Lett; 2009 Jul; 34(14):2177-9. PubMed ID: 19823540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabolical point and conical-like diffraction in periodic plasmonic nanostructures.
    Nam SH; Taylor AJ; Efimov A
    Opt Express; 2010 May; 18(10):10120-6. PubMed ID: 20588866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.