BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 20589081)

  • 1. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures.
    Wiebe NJ; Meyer IM
    PLoS Comput Biol; 2010 Jun; 6(6):e1000823. PubMed ID: 20589081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient RNA structure features are evolutionarily conserved and can be computationally predicted.
    Zhu JY; Steif A; Proctor JR; Meyer IM
    Nucleic Acids Res; 2013 Jul; 41(12):6273-85. PubMed ID: 23625966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. e-RNA: a collection of web servers for comparative RNA structure prediction and visualisation.
    Lai D; Meyer IM
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W373-6. PubMed ID: 24810851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression.
    Meyer IM
    Methods; 2017 May; 120():3-16. PubMed ID: 28433606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ShapeSorter: a fully probabilistic method for detecting conserved RNA structure features supported by SHAPE evidence.
    Tsybulskyi V; Meyer IM
    Nucleic Acids Res; 2022 Aug; 50(15):e85. PubMed ID: 35641016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Secondary Structures Conserved in Multiple RNA Sequences.
    Xu ZZ; Mathews DH
    Methods Mol Biol; 2016; 1490():35-50. PubMed ID: 27665591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structure prediction using positive and negative evolutionary information.
    Rivas E
    PLoS Comput Biol; 2020 Oct; 16(10):e1008387. PubMed ID: 33125376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoBold: a method for identifying different functional classes of transient RNA structure features that can impact RNA structure formation in vivo.
    Martín AL; Mounir M; Meyer IM
    Nucleic Acids Res; 2021 Feb; 49(4):e19. PubMed ID: 33095878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms.
    Ding F; Sharma S; Chalasani P; Demidov VV; Broude NE; Dokholyan NV
    RNA; 2008 Jun; 14(6):1164-73. PubMed ID: 18456842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA structural alignments, part II: non-Sankoff approaches for structural alignments.
    Asai K; Hamada M
    Methods Mol Biol; 2014; 1097():291-301. PubMed ID: 24639165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second eigenvalue of the Laplacian matrix for predicting RNA conformational switch by mutation.
    Barash D
    Bioinformatics; 2004 Aug; 20(12):1861-9. PubMed ID: 14988109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of accuracy and efficiency for RNA secondary structure prediction by sequence segmentation and MapReduce.
    Zhang B; Yehdego DT; Johnson KL; Leung MY; Taufer M
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 24564983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Bioinformatics; 2004 Jan; 20(1):58-66. PubMed ID: 14693809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four RNA families with functional transient structures.
    Zhu JY; Meyer IM
    RNA Biol; 2015; 12(1):5-20. PubMed ID: 25751035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA structural alignments, part I: Sankoff-based approaches for structural alignments.
    Havgaard JH; Gorodkin J
    Methods Mol Biol; 2014; 1097():275-90. PubMed ID: 24639164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.