BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20589277)

  • 1. Polycyclic aromatic hydrocarbon formation mechanism in the "particle phase". A theoretical study.
    Indarto A; Giordana A; Ghigo G; Maranzana A; Tonachini G
    Phys Chem Chem Phys; 2010 Aug; 12(32):9429-40. PubMed ID: 20589277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized combustion of biomass volatiles by varying O2 and CO2 levels: a numerical simulation using a highly detailed soot formation reaction mechanism.
    Wijayanta AT; Saiful Alam M; Nakaso K; Fukai J; Shimizu M
    Bioresour Technol; 2012 Apr; 110():645-51. PubMed ID: 22334001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced mechanism of formation and growth of polycyclic aromatic hydrocarbons in low-temperature environments via successive ethynyl radical additions.
    Mebel AM; Kislov VV; Kaiser RI
    J Am Chem Soc; 2008 Oct; 130(41):13618-29. PubMed ID: 18795780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indene formation from alkylated aromatics: kinetics and products of the fulvenallene + acetylene reaction.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2009 Aug; 113(31):8971-8. PubMed ID: 19603772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2008 Mar; 112(11):2362-9. PubMed ID: 18298104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozone interaction with polycyclic aromatic hydrocarbons and soot in atmospheric processes: theoretical density functional study by molecular and periodic methodologies.
    Maranzana A; Serra G; Giordana A; Tonachini G; Barco G; Causà M
    J Phys Chem A; 2005 Dec; 109(48):10929-39. PubMed ID: 16331937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: Quantum chemical molecular dynamics simulations.
    Saha B; Irle S; Morokuma K
    J Chem Phys; 2010 Jun; 132(22):224303. PubMed ID: 20550393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidized soot surface: theoretical study of desorption mechanisms involving oxygenated functionalities and comparison with temperature programed desorption experiments.
    Barco G; Maranzana A; Ghigo G; Causà M; Tonachini G
    J Chem Phys; 2006 Nov; 125(19):194706. PubMed ID: 17129149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain).
    Callén MS; de la Cruz MT; López JM; Murillo R; Navarro MV; Mastral AM
    Chemosphere; 2008 Nov; 73(8):1357-65. PubMed ID: 18692862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new mechanism for the formation of meteoritic kerogen-like material.
    Morgan WA; Feigelson ED; Wang H; Frenklach M
    Science; 1991 Apr; 252(5002):109-12. PubMed ID: 17739082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soot platelets and PAHs with an odd number of unsaturated carbon atoms and pi electrons: theoretical study of their spin properties and interaction with ozone.
    Giordana A; Maranzana A; Ghigo G; Causà M; Tonachini G
    J Phys Chem A; 2008 Feb; 112(5):973-82. PubMed ID: 18197638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAH growth initiated by propargyl addition: mechanism development and computational kinetics.
    Raj A; Al Rashidi MJ; Chung SH; Sarathy SM
    J Phys Chem A; 2014 Apr; 118(16):2865-85. PubMed ID: 24650362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth.
    Johansson KO; Head-Gordon MP; Schrader PE; Wilson KR; Michelsen HA
    Science; 2018 Sep; 361(6406):997-1000. PubMed ID: 30190399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Spin-Triplet Polycyclic Aromatic Hydrocarbons in Soot Surface Growth.
    Zhang HB; You X; Law CK
    J Phys Chem Lett; 2015 Feb; 6(3):477-81. PubMed ID: 26261966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE.
    Moscatelli D; Cavallotti C
    J Phys Chem A; 2007 May; 111(21):4620-31. PubMed ID: 17487990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts.
    Lies KH; Hartung A; Postulka A; Gring H; Schulze J
    Dev Toxicol Environ Sci; 1986; 13():65-82. PubMed ID: 2435507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational studies on the cyclization of polycyclic aromatic hydrocarbons in the synthesis of curved aromatic derivatives.
    Buñuel E; Marco-Martínez J; Díaz-Tendero S; Martín F; Alcamí M; Cárdenas DJ
    Chemphyschem; 2006 Feb; 7(2):475-81. PubMed ID: 16463336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of small polycyclic aromatic hydrocarbons on graphite: a combined scanning tunneling microscopy and theoretical approach.
    Florio GM; Werblowsky TL; Müller T; Berne BJ; Flynn GW
    J Phys Chem B; 2005 Mar; 109(10):4520-32. PubMed ID: 16851528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.